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 

Abstract— In the present paper damped vibrations of 

non-homogeneous rectangular plate of parabolically varying 

thickness resting on elastic foundation has been studied. The 

non- homogeneity of the plate material due to the variation in 

Young’s modulus and density is assumed, which varies 

exponentially. The governing equation of motion of plate of 

varying thickness in one direction is solved by numerical 

technique quintic spline for clamped-clamped and clamped- 

simply supported boundary conditions. The effect of damping, 

non-homogeneity, elastic foundation and taperness is discussed 

with permissible range of parameters. It is observed that nodal 

lines are shifted towards edge X=1 as thickness of edge X=0 

increases and no change appeared in the pattern of nodal lines 

for non-homogeneity and elastic foundation.  

 

Index Terms—Damping, Elastic Foundation, 

Nonhomogeneity, Taperness. 

 

I. INTRODUCTION 

  As technology is growing rapidly, the importance of study 

of vibration is increasing. Non- homogeneous elastic plates 

have acquired great importance as structural components in 

various engineering fields such as missile technology, 

aerospace industry, naval ship design and telephone industry 

etc; require a phenomenal increase in the development of 

fiber-reinforced materials due to desirability of high strength, 

light weight, corrosion resistance and high temperature 

performance. Due to appropriate variation of plate thickness 

these plates have significantly greater efficiency for bending, 

buckling and vibration as compared to plate with uniform 

thickness and also provide the advantage of reduction in 

weight and size essential for economy. Plates resting on 

elastic foundation have applications in pressure vessels 

technology such as petrochemical, marine and aerospace 

industry, building activities in cold regions and aircraft 

landing in arctic operations [1]-[2]. In a series of papers, Lal 

et al. [3] have studied the transverse vibrations of a 

rectangular plate of exponentially varying thickness resting 

on an elastic foundation. Transverse vibration of 

non-homogeneous orthotropic rectangular plate with variable 

thickness was discussed by Lal and Dhanpati [4]. In many 

applications of vibration and wave theory the magnitudes of 

the damping forces are small in comparison with the elastic 

and inertia forces but these small forces may have very great 

influence under some special situations. Recently O‟Boy [5] 

has analyzed the damping of flexural vibration and 

Alisjahbana and Wangsadinata [6] discussed the realistic  
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vibrational problem incorporating dynamic analysis of rigid 

roadway pavement under moving traffic loads. In reality all 

the vibrations are damped vibration and foundations of 

underlying vibrational problems are elastic in nature, so no 

vibration can be thought of being in existence without 

damping and elastic foundation.  Keeping this in view and 

practicality of problem, Robin and Rana [7]-[9] studied the 

damped vibration of rectangular/infinite elastic plates with 

variable thickness resting on elastic foundation. In this paper, 

damped vibrations of  non- homogeneous isotropic 

rectangular plate of parabolically varying thickness along one 

direction and resting on elastic foundation is analyzed by 

employing  Lévy approach  and assuming exponential 

variation in Young‟s modulus and density along with constant 

Poisson ratio. 

Various numerical techniques such as Frobenious method, 

finite difference method, simple polynomial approximation, 

Galerkin‟s method, Rayleigh-Ritz method, finite element 

method and Chebyshev collocation method, difference 

quadrature method etc, have been employed to analyze the 

modes of vibration of plates with different geometries. As 

finite difference and finite element require fine mesh size to 

obtain accurate results but are computationally expensive 

.The results due to Frobenious method are in the form of 

series and to achieve the high level of accuracy of results, 

large number of terms required which includes round off 

truncation errors. However, quintic splines interpolation 

technique has the capability of producing highly accurate 

results with minimum computational efforts for initial and 

boundary value problems also this method of solution is 

preferred over other methods for the reasons as a chain of 

lower order approximations may yield a better accuracy than a 

global higher order approximation and natural boundary 

conditions can be considered easily. Therefore in the present 

paper, quintic spline method is used to obtain first three 

modes of vibration for two different combinations of clamped 

and simply-supported boundary conditions. 

II.  MATHEMATICAL FORMULATION  

 

 Consider a non- homogeneous isotropic rectangular plate 

of length „a‟, breath „b‟, thickness ‘h(x, y)‟ and density „ ρ‟, 

with resting on a Winkler- type  elastic foundation „kf’ 

occupying the domain 0 ,0x a y b     in x-y plane. 

The middle surface being z=0 and the origin is at one of the 

corners of the plate. The two parallel edges (y=0, y=b) are 

assumed to be simply supported while the other two edges are 

differently restrained (clamped and simply supported). The 

x-and y axes are taken along the principal directions and z 

–axes is perpendicular to the x-y plane (Fig. 1). 
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Fig. 1. Boundary conditions and vertical cross-section of the plate. 

 

 

The differential equation which governs the damped 

transverse vibration of such plates is given 

by
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where 
3 3( , ) 12(1 ) ,D Eh x y    is the flexural rigidity 

at any point in the middle plane of the plate, K  is the 

damping constant, ( , , )w x y t is the transverse deflection. 

Let the two opposite edges y=0 and y=b of the plate be 

simply supported and thickness ( , )h h x y varies 

parabolically along the length i.e. in the direction of x-axis. 

Thus, „h’ is independent of y i.e. ( )h h x . For a harmonic 

solution, it is assumed that the deflection function w  

satisfying the condition              

( , , ) ( )sin costm y
w x y t W x e pt

b

 
  at  y=0 and y=b, 

(2) 

where  p is the circular frequency of vibration and m is a 

positive integer.  

Thus (1) becomes 
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Following non-dimensional variables are introduced 
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and equating the coefficient of sin(pt) and cos(pt)  

independently to zero, (3) reduces to  
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The physical quantities of interest are taperness, 

non-homogeneity, which are defined as, 
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and„ ‟ is the taper 

constant.  

On equating the coefficient the following equation is 

formed 
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and , ,K fd E  are frequency, damping  and elastic 

foundation parameters respectively. 

In order to determine smooth and best approximation of  

solution of (5) together with boundary conditions at the edge 

X=0 and X=1, quintic spline interpolation technique is used. 

According to the spline technique, suppose W(x) be a 
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function with continuous derivatives in [0, 1] and interval  

[0, 1] be divided into „n‟ subintervals by means of points  

iX such that 0 1 20 ... 1nX X X X      , 

where 1 , ( 0,1, 2,..., )iX X i X i n
n

     . Let the 

approximating function ( )W X  for the W(x) be a quintic 

spline with the following properties: 

(i)  ( )W X is a quintic polynomial in each interval 

1( , )k kX X  . 

(ii) ( ) ( ), 0,1,2,..., .kW X W X k n   

(iii) 

2 3 4

2 3 4
, ,

dW d W d W d W
and

dX dX dX dX
are continuous. 

 

In view of above axioms, the quintic spline takes the form 
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For m=0 (1) n, above system contains (n+1) homogeneous 

equation with  (n+5) unknowns, ai, i=0(1)4, and bj, j=0, 1, 

2… (n-1), can be represented in matrix form as  

                     A][B]= [0],                                           (8) 

where [A] is a matrix of order (n+1)  (n+5), while [B] and 

[0] are column matrices of order (n5). 

 

 

III. BOUNDARY CONDITIONS AND FREQUENCY EQUATION 

 

The following two cases of boundary conditions have been 

considered: (C-C): clamped at both the edge X=0 and X=1. 

(i) (C-SS): clamped at X=0 and simply supported at 

X=1. 

The relations that should be satisfied at clamped and simply 

supported respectively are 

0
dW

W
dX
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d W
W

dX
                                          (9) 

Applying the boundary conditions C-C to the displacement 

function by (9) one obtains a set of four homogeneous 

equations in terms of (n+5) unknown constants which can be 

written as 

                     [B
cc

][B]= [0],                                     (10) 

where B
cc

 is a matrix of order 4(n+5).  

Therefore the (8) together with (10) gives a complete set of 

(n+5) homogeneous equations having (n+5) unknowns which 

can be written as 
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For a non-trivial solution of (11), the characteristic 

determinant must vanish, i.e. 

                              0
cc

A

B
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Similarly for (C-SS) plate the frequency determinant can be 

written as   

                              0
ss

A

B
  .                                  (13) 

where  B
ss

 is a matrix of order 4(n+5).  

.  

IV. 

 

NUMERICAL RESULTS AND DISCUSSION 

The frequency equations (12), (13) provide the values of 

frequency parameter Ω for various values of plate parameters. 

In the present paper, first three frequency modes of vibration 

have been computed for the above mentioned two boundary 

conditions for different values of foundation parameter 

Ef=0.0(0.005)0.02, damping parameter dk=0.0(0.025)0.01 

and taper parameter α=0.0(0.1)0.4 for β=0.0, 0.4, Poisson 

ratio‟s ν=0.3, thickness of plate h=0.03 and aspect ratio 

a/b=0.25. The numerical method provides approximate 

values therefore in order to minimize the error; there is an 

urgent need to determine the optimum size of interval length 

ΔX. To choose appropriate number of nodes n, convergence 

studies have been carried out for different sets of plate 

parameter. Table I presents the convergence of frequency 

parameter with increasing number of nodes for specified plate 

i.e. α=0.4, β=0.4, Ef=0.02, dk=0.01. In the present problem, a 

computer program was developed and executed for 

n=10(10)150 and observed that, frequency. 

 
Table I Number of nodes for convergence of frequency parameter Ω for 

isotropic C-C and C-SS plates for h=0.03, ν=0.3, m=1, β=0.04,α=0.4, 

dk=0.01, Ef=0.02, a/b=0.25. 

value of n             C-C plate       

 

C-SS plate   

 

Mode     

  

 Mode   

10 0.908 1.7233 3.2343  0.8326 1.4919 2.8563 

20 0.9105 1.7189 3.1752 

 

0.8338 1.4875 2.7999 

30 0.9109 1.718 3.1639 

 

0.834 1.4866 2.79 

40 0.9111 1.7176 3.1599 

 

0.8341 1.4863 2.7866 

50 0.9111 1.7175 3.1581 

 

0.8341 1.4862 2.785 

60 0.9112 1.7174 3.1571 

 

0.8342 1.4861 2.7842 

70 0.9112 1.7173 3.1565 

 

0.8342 1.4861 2.7836 

80 0.9112 1.7173 3.1561 

 

0.8342 1.4861 2.7833 

90 0.9112 1.7173 3.1559 

 

0.8342 1.4861 2.7831 

100 0.9112 1.7172 3.1557 

 

0.8342 1.486 2.7829 

110 0.9112 1.7172 3.1555  0.8342 1.486 2.7828 

120 0.9112 1.7172 3.1554  0.8342 1.486 2.7827 

130 0.9112 1.7172 3.1554  0.8342 1.486 2.7826 

140 0.9112 1.7172 3.1553  0.8342 1.486 2.7826 

150 0.9112 1.7172 3.1553  0.8342 1.486 2.7826 
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(a)                      (b) 

 

Fig. 2. Percentage error in frequency parameter Ω: (a) C-C plate   (b) C-SS plate, for a/b=0.25, α=0.04,β=0.4,Ef =0.02,dk=0.01;◊First mode, ○ 

Second mode; □ Third mode; Percentage error=[(Ωn- Ω140)/ Ω140]x100; n=10(10)140. 

 

 

Table II Comparison of frequency parameter Ω for isotropic, homogeneous (β=0), without damping parameter (dk=0), C-C and C-SS plates of uniform 

thickness (α=0) for m=1 and υ=0.3. 

 

Boundary                         Ef=0.0                Ef=0.01  

Conditions 

                 value of  a/b         0.5            1                            0.5             1 

 

    Ref./Mode             I            II    I II                 I    II     I     II 
 

C-C Liessa 

Lal et al. 

Jain & Soni 

Sharma et al. 

Present 

---   

23.816 

23.816 

23.815 

23.8161     

--- 

63.635 

63.535 

63.5345 

63.5401 

28.946 

28.951 

28.951 

28.950 

28.9508 

69.320 

69.327 

69.327 

69.327 

69.3314 

 --- 

26.214 

--- 

26.214 

26.2146 

--- 

64.472 

--- 

64.472 

64.4775 

--- 

30.954 

--- 

30.954 

30.9540 

--- 

70.187 

--- 

70.187 

70.1914 

C-SS Liessa 

Lal et al. 

Jain & Soni 

Sharma et al. 

Present 

--- 

17.332 

17.332 

17.332 

17.3321 

--- 

52.098 

52.097 

--- 

52.1022 

23.646 

23.646 

23.647 

23.636 

23.6464 

58.641 

58.646 

58.688 

58.646 

58.6498 

 --- 

20.503 

20.506 

20.503 

20.5037 

--- 

53.237 

53.288 

53.237 

53.2413 

--- 

26.060 

26.061 

26.060 

26.0606 

--- 

59.661 

59.702 

59.661 

59.6641 

 

 

parameter converges with increasing number of nodes and for 

convergence of frequency parameter in higher modes more 

nodes are needed than for the lower ones. The convergence of 

frequency with increasing number of nodes is monotonic for 

C-C and C-SS plate. Percentage error in frequency parameter 

for first three modes of vibration are presented in Fig. 2 (a, b) 

for clarity. Therefore the numerical results are obtained for 

n=140 and depicted through tables (II-V) and graphs (3-7) 

since no consistent improvement in results while n≥140. It is 

found that frequency parameter for clamped plate is greater 

than that of simply supported plate whatever the values of 

other parameters are. 

A comparison of results with those available in the 

literature obtained by other methods with in permissible range 

of plate parameters has been presented in Table II. Table II 

shows a comparison of results for homogeneous (β=0.0) 

isotropic plates of uniform thickness (α=0.0) taken as h=0.1 

with exact solution [10], with those obtained by Chebyshev 

collocation technique [11], Frobeneous method [12], and 

Differential quadrature method [13] for m=1, two values of 

aspect ratio a/b=0.5, 1.0 and Ef =0.0, 0.01. Excellent 

agreement of the results shows the versatility of present 

technique. 

Table III(a) and III(b) show the numerical values of 

frequency parameter Ω with the increasing value of damping 

parameter dk for homogeneous (β=0.0) and non-homogeneous 

(β=0.04) respectively, for both the boundary conditions C-C 

and C-SS. These results are also presented in Fig. 3(a), 3(b) 

and 3(c) for the fixed value of taper constant α and foundation 

parameter Ef for first three modes of vibration of C-C and 

C-SS plates. Fig. 3(a) shows the behavior of frequency 

parameter Ω decreases with the increasing values of damping 

parameter dk  for two different values of  taper parameter 

α=0.0, 0.4,  foundation parameter Ef  =0.0, 0.01 and non 
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homogeneity parameter β=0.0, 0.4 for both the  plates. It is 

observed that the rate of decrease of Ω with damping 

parameter dk for C-SS is higher than that for C-C plate 

keeping all other plate parameters fixed. This rate decreases 

with the increase in the value of non homogeneity parameter 

β. A similar inference can be seen from Fig. 3 (b) and (c), 

when the plate is vibrating in the second mode as well as in the 

third mode of vibration except that the rate of decrease of Ω 

with dk   is lesser as compared to the first mode. 

Table IV(a) and IV(b) provide the inference of foundation 

parameter Ef on frequency parameter Ω for two values of 

damping parameter dk=0.0, and 0.01 respectively, for the 

fixed value of taper parameter α=0.0, 0.4 and non 

homogeneity parameter β=0.0, 0.4. It is noticed that the 

frequency parameter Ω increases continuously with the 

increasing value of foundation parameter Ef for C-C and C-SS 

plates, whatever be the value of other plate parameters. It is 

found that the rate of increases of frequency parameter Ω for 

C-SS plate is higher than C-C plate for three modes. Fig. 4(a) 

gives the inference of foundation parameter Ef on frequency 

parameter Ω for the first mode of vibration. This rate 

increases with the increase in the value of foundation 

parameter Ef , it decreases with the increases in the number of 

modes, as clear from 4(b) and (c) when the plate is vibrating 

in the second and third mode of vibration. From Fig. 4(b), the 

effect of foundation parameter is found to increase the 

frequency parameter Ω, however the rate of increase gets 

reduced to more than half of the first mode for both the 

boundary conditions. In case of third mode, this rate of 

increase further decreases and becomes nearly half of the 

second mode as is evident from Fig. 4(c).  The results show 

that presence of an elastic foundation increases the frequency 

parameter in all the cases.  

Table V(a) and V(b) show the effect of taper parameter α 

on frequency parameter Ω for two different value of damping 

parameter dk=0.0 and 0.01 respectively, for the fixed value of 

foundation parameter Ef =0.0, 0.01 and β=0.0, 0.4. Fig. 5(a) 

provides the graphs of frequency parameter Ω verses taper 

parameter α for the first mode of vibration. It is observed in 

the presence of damping parameter dk i.e. for dk =0.1 the  

frequency parameter Ω decreases continuously  with 

increasing values of taper parameter α for both the boundary 

condition, whatever be the value of other plate parameters. 

But in the absence of damping parameter dk .i.e for dk =0.0 it 

has been observed that the frequency parameter Ω decreases 

with increasing values of taper parameter α for C-C plates, 

whatever be the value of other parameters and it has also been 

observed that for C-SS plate, there is a continuously 

decrement in the value of frequency parameter Ω for fixed 

values of Ef =0.0, and β=0.0, 0.4. In case of Ef =0.01 and 

β=0.0 i.e homogeneous plate, there is continuously 

increment, however for non-homogeneous plate (β=0.4), 

there is a local minima occurs at 0.2. When the plate is 

vibrating in the second mode (Fig. 5(b)), the frequency 

parameter Ω is found to decrease with increasing value of α 

for both the boundary conditions in all the cases. The 

frequency parameter Ω is found to increase with the value of 

Ef (other parameter being fixed). However, the rate of 

increase of Ω is less when compared to that for the 

fundamental mode. It is also observed that frequency 

parameter Ω is found to decrease with the value of β for dk 

=0.0 but in the presence of damping parameter .i.e for dk 

=0.01, frequency parameter Ω is found to decrease with the 

value of β for Ef =0.1 and increase for Ef =0.0. As far as the 

behavior of the plate vibrating in the third mode (Fig. 5(c)) is 

concerned, it is the same as for the second mode with the 

difference that the rate of decrease of frequency parameter Ω 

with taper constant α is much higher when compared to the 

first two modes. 

The normalized displacements for the two boundary 

conditions C-C and C-SS, considered in this paper are shown 

in Fig..6 and Fig..7 respectively.  The plate thickness varies 

parabolically in X-direction and the plate is considered resting 

on elastic foundations Ef=0.02 with damping parameter dk 

=0.01. Mode shapes for a rectangular plate i.e, a/b=0.25 have 

been computed and observed that the nodal 
 

Table III (a) Values of frequency parameter Ω for different values of damping parameter dk .h=0.03, ν=0.3, m=1, β=0.0, a/b=0.25. 

 

  

α=0.0 , Ef=0.0 α=0.0 , Ef=0.01 α=0.4 , Ef=0.0 α=0.4 , Ef=0.01 

 

Mode c-c c-ss c-c c-ss c-c c-ss c-c c-ss 

 

I 0.6816 0.4766 0.8933 0.7487 0.5597 0.4242 0.8331 0.7567 

dk=0.0 II 1.8643 1.515 1.9516 1.6213 1.5605 1.3074 1.6806 1.451 

 

III 3.6431 3.1448 3.6885 3.1974 3.075 2.6982 3.1383 2.7708 

 

I 0.6765 0.4692 0.8894 0.744 0.5515 0.4126 0.8276 0.7503 

dk=0.0025 II 1.8624 1.5128 1.9498 1.6192 1.5574 1.3036 1.6777 1.4476 

 

III 3.6421 3.1437 3.6876 3.1963 3.0735 2.6964 3.1367 2.769 

 

I 0.6609 0.4465 0.8776 0.7299 0.5261 0.3754 0.811 0.7307 

dk=0.005 II 1.8568 1.5059 1.9445 1.6127 1.5481 1.2921 1.6691 1.4372 

 

III 3.6392 3.1404 3.6848 3.193 3.0687 2.6908 3.132 2.7635 

 

I 0.6341 0.4058 0.8576 0.7057 0.4808 0.3033 0.7824 0.6967 

dk=0.0075 II 1.8474 1.4943 1.9355 1.6019 1.5326 1.2727 1.6547 1.4197 

 

III 3.6345 3.1349 3.68 3.1876 3.0607 2.6814 3.1242 2.7544 

 

I 0.5945 0.3406 0.8288 0.6703 0.4086 0.1529 0.7406 0.646 

dk=0.01 II 1.8342 1.4779 1.9229 1.5867 1.5105 1.2451 1.6342 1.3949 

 

III 3.6278 3.1271 3.6734 3.1799 3.0494 2.6683 3.1131 2.7416 
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Table III (b) Values of frequency parameter Ω for different values of damping parameter dk ,h=0.03, ν=0.3, m=1, β=0.4, a/b=0.25. 

 

  

α=0.0 , Ef=0.0 α=0.0 , Ef=0.01 α=0.4 , Ef=0.0 α=0.4 , Ef=0.01 

 

Mode c-c c-ss c-c c-ss c-c c-ss c-c c-ss 

 

I 0.6823 0.4645 0.8595 0.6938 0.5564 0.4137 0.7857 0.6941 

dk=0.0 II 1.8652 1.5039 1.9373 1.5918 1.5557 1.2949 1.6534 1.4115 

 

III 3.644 3.1337 3.6815 3.177 3.0698 2.6849 3.1208 2.7434 

 

I 0.6788 0.4597 0.8568 0.6906 0.5511 0.4064 0.782 0.6898 

dk =0.0025 II 1.8639 1.5023 1.936 1.5903 1.5537 1.2925 1.6515 1.4093 

 

III 3.6434 3.1329 3.6808 3.1763 3.0688 2.6837 3.1198 2.7422 

 

I 0.6684 0.445 0.8486 0.681 0.5347 0.3834 0.7705 0.6765 

dk =0.005 II 1.8601 1.4976 1.9324 1.5859 1.5478 1.2852 1.6459 1.4026 

 

III 3.6414 3.1307 3.6789 3.1741 3.0657 2.6802 3.1168 2.7388 

 

I 0.6506 0.4193 0.8347 0.6645 0.5063 0.3418 0.751 0.6538 

dk =0.0075 II 1.8537 1.4898 1.9262 1.5785 1.5378 1.273 1.6366 1.3915 

 

III 3.6382 3.1269 3.6757 3.1703 3.0606 2.6743 3.1118 2.733 

 

I 0.6249 0.3804 0.8148 0.6408 0.4635 0.273 0.7229 0.6207 

dk =0.01 II 1.8447 1.4788 1.9176 1.5681 1.5238 1.2558 1.6234 1.3757 

 

III 3.6336 3.1216 3.6711 3.1651 3.0535 2.666 3.1048 2.7249 

 

Table IV (a) Values of frequency parameter Ω for different values of Elastic foundation parameter Ef .h=0.03, ν=0.3, m=1, dk=0.0, a/b=0.25. 
 

  

α=0.0 , β=0.0 α=0.0 , β=0.4 α=0.4 , β=0.0 α=0.4 , β=0.4 

 

Mode c-c c-ss c-c c-ss c-c c-ss c-c c-ss 

 

I 0.6816 0.4766 0.6823 0.4645 0.5597 0.4242 0.5564 0.4137 

Ef=0.0 II 1.8643 1.515 1.8652 1.5039 1.5605 1.3074 1.5557 1.2949 

 

III 3.6431 3.1448 3.644 3.1337 3.075 2.6982 3.0698 2.6849 

 

I 0.7945 0.6275 0.776 0.5904 0.7098 0.6136 0.6808 0.5714 

Ef=0.005 II 1.9084 1.5691 1.9015 1.5484 1.6216 1.3811 1.6053 1.3544 

 

III 3.6658 3.1712 3.6628 3.1554 3.1068 2.7347 3.0954 2.7143 

 

I 0.8933 0.7487 0.8595 0.6938 0.8331 0.7567 0.7857 0.6941 

Ef=0.01 II 1.9516 1.6213 1.9373 1.5918 1.6806 1.451 1.6534 1.4115 

 

III 3.6885 3.1974 3.6815 3.177 3.1383 2.7708 3.1208 2.7434 

 

I 0.9822 0.8527 0.9356 0.7837 0.9403 0.8766 0.8782 0.7982 

Ef=0.015 II 1.9939 1.6719 1.9723 1.634 1.7376 1.5179 1.7001 1.4664 

 

III 3.7111 3.2233 3.7001 3.1985 3.1694 2.8064 3.1461 2.7722 

 

I 1.0636 0.9454 1.006 0.8642 1.0364 0.9817 0.9618 0.8902 

Ef=0.02 II 2.0352 1.7211 2.0068 1.6752 1.7928 1.5819 1.7456 1.5192 

 

III 3.7334 3.2491 3.7186 3.2198 3.2003 2.8416 3.1711 2.8007 

 

 

Table IV(b) Values of frequency parameter Ω for different values of Elastic foundation parameter Ef .h=0.03, ν=0.3, m=1, dk=0.01, a/b=0.25. 

  

α=0.0 , β=0.0 α=0.0 , β=0.4 α=0.4 , β=0.0 α=0.4 , β=0.4 

 

Mode c-c c-ss c-c c-ss c-c c-ss c-c c-ss 

 

I 0.5945 0.3406 0.6249 0.3804 0.4086 0.1529 0.4635 0.273 

Ef=0.0 II 1.8342 1.4779 1.8447 1.4788 1.5105 1.2451 1.5238 1.2558 

 

III 3.6278 3.1271 3.6336 3.1216 3.0494 2.6683 3.0535 2.666 

 

I 0.7212 0.5317 0.7261 0.527 0.5981 0.4696 0.6072 0.4795 

Ef=0.005 II 1.8791 1.5333 1.8815 1.5241 1.5736 1.3221 1.5743 1.3171 

 

III 3.6507 3.1536 3.6524 3.1434 3.0814 2.7052 3.0792 2.6956 

 

I 0.8288 0.6703 0.8148 0.6408 0.7405 0.646 0.7229 0.6207 

Ef=0.01 II 1.9229 1.5867 1.9176 1.5681 1.6342 1.3949 1.6234 1.3757 

 

III 3.6734 3.1799 3.6711 3.1651 3.1131 2.7416 3.1048 2.7249 

 

I 0.9239 0.7849 0.8947 0.7371 0.8595 0.7834 0.8225 0.7352 

Ef=0.015 II 1.9658 1.6384 1.953 1.6109 1.6927 1.4641 1.6709 1.4319 

 

III 3.6961 3.206 3.6898 3.1866 3.1445 2.7775 3.1301 2.7539 

 

I 1.01 0.8847 0.968 0.8223 0.9638 0.8998 0.9112 0.8342 

Ef=0.02 II 2.0078 1.6885 1.9878 1.6526 1.7493 1.5303 1.7172 1.486 

 

III 3.7185 3.2319 3.7083 3.208 3.1756 2.8131 3.1553 2.7826 
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Table V(a) Values of frequency parameter Ω for different values of taper parameter α., h=0.03, ν=0.3, m=1, dk=0.0, a/b=0.25. 

  

β=0.0 , Ef=0.0 β=0.0 , Ef=0.01 β=0.4 , Ef=0.0 β=0.4 , Ef=0.01 

 

Mode c-c c-ss c-c c-ss c-c c-ss c-c c-ss 

 

I 0.6816 0.4766 0.8933 0.7487 0.6823 0.4645 0.8595 0.6938 

α=0.0 II 1.8643 1.515 1.9516 1.6213 1.8652 1.5039 1.9373 1.5918 

 

III 3.6431 3.1448 3.68 3.1974 3.644 3.1337 3.6815 3.177 

 

I 0.6527 0.4647 0.877 0.7494 0.6524 0.453 0.8402 0.693 

α=0.1 II 1.7931 1.4665 1.8866 1.5798 1.7926 1.455 1.8696 1.5483 

 

III 3.5106 3.0405 3.55 3.0967 3.51 3.0288 3.55 3.075 

 

I 0.623 0.4522 0.8613 0.7509 0.6216 0.4408 0.8213 0.6926 

α=0.2 II 1.7191 1.4159 1.8199 1.5375 1.7172 1.4041 1.7999 1.5039 

 

III 3.3725 2.9318 3.4252 2.9925 3.3704 2.9196 3.4134 2.9691 

 

I 0.592 0.4387 0.8466 0.7532 0.5897 0.4278 0.8031 0.693 

α=0.3 II 1.6418 1.3631 1.7513 1.4946 1.6385 1.3509 1.7279 1.4583 

 

III 3.2278 2.8181 3.2852 2.8841 3.2242 2.8054 3.2708 2.8589 

 

I 0.5597 0.4242 0.8331 0.7567 0.5564 0.4137 0.7857 0.6941 

α=0.4 II 1.5605 1.3074 1.6806 1.451 1.5557 1.2949 1.6534 1.4115 

 

III 3.075 2.6982 3.1383 2.7708 3.0698 2.6849 3.1208 2.7434 

 

Table V(b) Values of frequency parameter Ω for different values of taper parameter α,h=0.03, ν=0.3, m=1, dk=0.01, a/b=0.25. 

  

β=0.0 , Ef=0.0 β=0.0 , Ef=0.01 β=0.4 , Ef=0.0 β=0.4 , Ef=0.01 

 

Mode c-c c-ss c-c c-ss c-c c-ss c-c c-ss 

 

I 0.5945 0.3406 0.8288 0.6703 0.6249 0.3804 0.8148 0.6408 

α=0.0 II 1.8342 1.4779 1.9229 1.5867 1.8447 1.4788 1.9176 1.5681 

 

III 3.6278 3.1271 3.6734 3.1799 3.6336 3.1216 3.6711 3.1651 

 

I 0.5554 0.3106 0.8071 0.6649 0.5889 0.3597 0.792 0.636 

α=0.1 II 1.7597 1.4252 1.855 1.5416 1.7702 1.4275 1.8481 1.5226 

 

III 3.4936 3.0208 3.5426 3.0774 3.4986 3.0156 3.5387 3.062 

 

I 0.5125 0.2738 0.7852 0.6592 0.5507 0.3359 0.7691 0.6311 

α=0.2 II 1.6816 1.3695 1.7845 1.4949 1.6924 1.3737 1.7762 1.4756 

 

III 3.3534 2.9097 3.4064 2.9708 3.3578 2.905 3.4009 2.9548 

 

I 0.4645 0.2257 0.7631 0.6529 0.5093 0.3077 0.7461 0.626 

α=0.3 II 1.599 1.3099 1.7112 1.4461 1.6106 1.3168 1.7015 1.4267 

 

III 3.2059 2.7927 3.2637 2.8592 3.2099 2.7889 3.2567 2.8428 

 

I 0.4086 0.1529 0.7405 0.646 0.4635 0.273 0.7229 0.6207 

α=0.4 II 1.5105 1.2451 1.6342 1.3949 1.5238 1.2558 1.6234 1.3757 

 

III 3.0494 2.6683 3.1131 2.7416 3.0535 2.666 3.1048 2.7249 
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(a)                                                                             (b)                                                             (c) 

Fig. 3. Natural frequencies for C-C and C-SS plates: (a) First mode (b) Second mode (c) Third mode ,for a/b=0.25 ―, C-C; --, C-SS;, α=0.0, 

Ef=0.0, β=0.0; , α=0.0 , Ef=0.0, β=0.04; ○, α=0.0 , Ef=0.01,β=0.0; ●, α=0.0 , Ef=0.01, β=0.01; 

□, α=0.4, Ef=0.0, β=0.0; , α=0.4 , Ef=0.0, β=0.01;  Δ, α=0.4 , Ef=0.01, β=0.0;  α=0.4 , Ef=0.01, β=0.01 



                                                                                

Study of Damped Vibration of Non Homogeneous Rectangular Plate of Variable Thickness 

 

                                                                                                 49                                                                            www.ijeas.org 

 

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1.1

Elastic foundation parameter (Ef)

f
r
e
q
u
e
n
c
y
 
p
a
r
a
m

e
t
e
r

frequency parameter with varying elastic foundation parameter

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

Elastic foundation parameter (Ef)
f
r
e
q
u
e
n
c
y
 
p
a
r
a
m

e
t
e
r

frequency parameter with varying elastic foundation parameter

0 0.002 0.004 0.006 0.008 0.01 0.012 0.014 0.016 0.018 0.02
2.6

2.8

3

3.2

3.4

3.6

Elastic foundation parameter (Ef)

f
r
e
q
u
e
n
c
y
 
p
a
r
a
m

e
t
e
r

frequency parameter with varying elastic foundation parameter

 
(a)                                                        (b)                                                                      (c) 

Fig. 4. Natural frequencies for C-C and C-SS plates: (a) First mode (b) Second mode (c) Third mode ,for a/b=0.25 . ―, C-C; ----, C-SS;, α=0.0, 

dk=0.0, β=0.0; , α=0.0 , dk =0.01, β=0.0; ○, α=0.0 , dk =0.0,β=0.4; ●, α=0.0 , dk =0.01, β=0.4; 

□, α=0.4, dk =0.0, β=0.0;   , α=0.4 , dk =0.1, β=0.0;  Δ, α=0.4 , dk =0.0, β=0.4;  , α=0.4 , dk =0.01, β=0.4 
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(a)                                                                     (b)                                                                   (c) 

Fig. 5. Natural frequencies for c-c and c-s plates: (a) First mode (b) Second mode (c) Third mode, for a/b=0.25. ―, C-C; ----, C-SS;, dk=0.0, 

Ef=0.0, β=0.0;  , dk=0.01 , Ef=0.0, β=0.0; ○, dk =0.0 , Ef=0.01,β=0.0; ●, dk =0.01 , Ef=0.01, β=0.0; 

□, dk =0.0, Ef=0.0, β=0; , dk =0.01 , Ef=0.0, β=0.4;  Δ, dk =0.0 , Ef=0.01, β=0.4;  , dk =0.01 , Ef=0.01, β=0.4; 
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  Fig. 6. Normalized displacements for C-C  plate, for a/b=0.25; 

h=0.03,dk=0.01, Ef=0.02; 

―, First mode;――,Second mode;……,Third mode; 

●, α=-0.5, β=-0.5; □, α=0.5, β=0.5; , α=0.5, β=-0.5; , α=-0.5,β=0.5 
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Fig. 7. Normalized displacements for C-SS plate, for a/b=0.25; h=0.03, 

dk=0.01, Ef=0.02; 

―, First mode; ――, Second mode; ……, Third mode; 

●,α=-0.5,β=-0.5;□, α=0.5,β=0.5;,α=0.5,β=-0.5; , α=-0.5,β=0.5 
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lines are seen to shift towards the edge, i.e. X=1 as the edge 

X=0 increases in thickness for both the plates. No special 

change was seen in the pattern of nodal lines by taking 

different values of β and Ef. As normalized displacements 

were differing only at the third or fourth place after decimal 

for both the boundary conditions. 

V. CONCLUSION 

The results of present study are computed using MATLAB 

within the permissible range of parameters up to the desired 

accuracy (10
-8

), which validates the actual phenomenon of 

vibrational problem. Variation in thickness, elastic 

foundation, damping parameter and non- homogeneity 

parameter are of great interest since it provides reasonable 

approximation to linear vibrations. One of the major causes of 

plate failures in industrial machines like turbine blades is from 

undamped/damped vibration, which results in high cyclic 

fatigue. Determination of vibration frequencies is of utmost 

importance for assessment of failure life. The results of 

present study suggests that the external damping (e.g. friction 

damping or lacquer damping) may easily be determined 

corresponding to inherent damping of plate in underlying 

situation. Thus the present study may be helpful in designing 

of plates which requires an accurate determination of their 

natural frequencies and mode shapes.  
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