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Abstract— In this paper, a new improvement of the minimum 

gersgorin disc theorem is given, which uses the improvement of 

the minimum disc theorem to obtain a new region of eigenvalue 

distribution. Although the method is not precise, it is very useful 

in practical applications. 

 

Index Terms—Eigenvalue; Gerschgorin disc theorem;  

minimum disc theorem. 

 

I. INTRODUCTION 

  In scientific research, in many problems such as 

mathematical physics and numerical analysis can be 

transformed into solving linear system, how to calculate 

eigenvalues of matrix plays a very important role in the field 

of matrix analysis for a long time. For some large matrix, it is 

difficult to find out the exact value of eigenvalues. Hence, we 

can estimate approximate value of matrix eigenvalue, The 

disk theorem is a classical method for estimating the 

eigenvalues of a matrix. In addition, the minimal disc theorem 

is a more efficient theorem based on the theorem of the 

matrix. On the basis of previous studies, this paper a new 

improvement of the minimum gersgorin disc theorem is 

given, which uses the improvement of the minimum disc 

theorem to obtain a new region of eigenvalue distribution. 

Although the method is not precise, it is very useful in 

practical applications.  

First we recall some basic Theorem that will be used in 

this paper.  

Lemma 1(Gerschgorin disc theorem [1]). Suppose that 
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Lemma 2 (Minimal Gerschgorin disc theorem [2,3]). 

Suppose that   nn

ij CaA  ， X  

),(0),,,,( 21 Nixxxxdiag in   let 
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Then  AR  is minimal Gerschgorin disc region of A . 

proof. Suppose that 
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Due to definition of eigenvalue YYAXX  1
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For 
' of AXX 1

,  A
x ' , then  A

x  , 

we all the arbitrary of X , then  AR . 

The proof of Lemma 2 is completed.     

II. MAIN RESULTS 

      In this section, based on the minimal Gerschgorin disc 

region of matrix, we state our main results. 

 

Theorem 3.  Suppose that   ,nn
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 nxxxdiagX ,,, 21    .0 Nixi   
 

Proof. For  ,A  we easy to known that 

 AXX 1 . Assuming that y is called an eigenvector 

of A associated with  , 
nT

n Ryyyy  ),,,( 21  , due 

to definition of eigenvalue, 

                                  yyAXX 1
                           (2.1) 
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 in the same way, 
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According to (2.2), (2.3),  we can obtain 
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Due to the arbitrary of  , qp yy ,  and (2.4), we could obtain, 

for  nxxxdiagX ,,, 21  , then all eigenvalues for A 

must be seated the union  ADR
 compose with then 
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  In order to proof that the theorem is more effective than the 

original minimum disc theorem, so we need to proof 
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According to Lemma 2, if 0X ,  ,Az R  then 
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According to (2.6), (2.7),  we can obtain 
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So we get a contradiction with the know, then 
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The proof of Theorem 3 is completed. 

 

Corollary 4 If   ,nn
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where 
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III. CONCLUSION 

  In many fields such as numerical analysis and 

mathematical physics, a number of problems come down to 

the study of linear system, how to calculate eigenvalues of 

matrix plays a very important role in the field of matrix 

analysis for a long time. For some large matrix, it is difficult to 

find out the exact value of eigenvalues. On the basis of 

previous studies, this paper a new improvement of the 

minimum gersgorin disc theorem is given, which uses the 

improvement of the minimum disc theorem to obtain a new 

region of eigenvalue distribution. Although the method is not 

precise, it is very useful in practical applications. 

In addition, in the process of application, the main 

conclusions of the diagonal matrix X is particularly important, 

we generally choose the diagonal element between 0 and 1, 

the method is more effective. The selection of X technology is 

worth our further exploration. 
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