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Abstract— Since the world is moving towards the
modernization so the smart grid idea is one of the smart idea
leads to the modernization. One of the most important factors
for the smart grid is the optimal production-commutation
balance. Due to the lacking capabilities of accomplishing the
increasing needs of the power with normal procedures, the
world is moving towards the power production from the
renewable energy sources. To get the efficient power production,
the world is making the grids which generate power from the
renewable sources, smart. Since solar is one of the important
renewable energy sources, hence the changing climatic
conditions affect heavily the ratio of power production from the
solar sources. In this research, some of these climatic factors are
considered to predict the solar power production by using the
real-time data of a solar power plant located at Konya, Turkey.
The inputs factors in consideration are on the daily basis which
includes the average humidity, the minimum, average and the
maximum temperatures, the solar irradiance, average and the
maximum wind speed and the power generation values. The
behavior of this solar power plant along with the prediction of
the power production is carried out by using an Artificial Neural
Network (ANN) in Matrix Laboratory (MATLAB) software’s
built-in toolbox named as Neural Net Fitting toolbox. In ANNSs,
three different built-in learning algorithms in this toolbox
named as Levenberg-Marquardt, Bayesian Regularization, and
Scaled Conjugate Gradient are used to compare the prediction
results, finally to get good and accurate results.

Index Terms— Artificial neural network in MATLAB,
forecasting of energy production from renewable energy source,
neural net fitting toolbox, solar power production.

I. INTRODUCTION

Renewable energy nowadays, is prominent technology to
fulfill the desired power consumption needs. As the countries
are devolving day by day, the power requirements are also
increasing. Power production as required, is the most
important factor in the smart grids based on solar power
plants. Solar power plant gives power production based on the
intensity of solar radiation, which depends on the daily
weather conditions. There are so many factors of weather
which affect the power production from solar power plants.
Therefore, it is highly required to know possible power
production depending on weather factors somewhat earlier so
that load needs can be satisfied. The prediction of power
production can be carried out by using different
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methodologies varying from numerical to artificial neural and
fuzzy models considering the affecting factors and the time
intervals for forecasting. Affecting factors include the
intensity of solar radiation, wind speed, humidity,
temperature, etc. Time intervals are described on the basis of
time duration; hence the forecasting can be short-term,
mid-term and long-term.

Il. LITERATURE REVIEW

Many types of research have been carried out by using a
variety of databases and different models are presented in
these years to forecast the load or power production of solar
power plants to match the requirements. One of the researcher
modeled a variety of solar-based applications through
Artificial Neural Network (ANN) [1] whereas another
researcher provided a comparative survey on several
predicting models[2]. Other researchers discussed the short,
long and medium-term behavior of the smart grid respectively
[3], [4]. Researchers also presented different types of solar
and Photovoltaic (PV) forecasting models [5]-[10].

Most of the researchers used an ANN to forecast the solar
energy potential in different areas of Turkey, Italy, Nigeria,
California, Kuwait, Queensland, and Australia respectively
[11]-[17]. Some of the researchers forecasted the effect of the
solar power on islands[18]-[20]. Others, predicted the solar
production of a laboratory-level micro-grid and real-time
micro-grid using many ANN respectively [21], [22]. Other
than that, researchers forecasted the power production by
using ANN in Matrix Laboratory’s (MATLAB) built-in
toolboxes over the datasets of Nigeria and India respectively
[23], [24].

One of the researcher provided an online forecasting
two-stage method for a small village in Denmark [25] whereas
another predicted short-term load requirements [26]. Other
researcher designed a NARX based forecasting model [27]
whereas one gave a solar forecasting model which gets the
input from sensors [28]. Many other researcher used machine
learning algorithms for the solar forecasting [29]-[31].

One of the scientist gave a solar power forecasting model
used an ANN tuning technique developed for acoustic signal
classification and image edge detection to improve the
accuracy [32]. To gain higher accuracy, one of the scientist
combined the ANN with wavelet analysis [33], another
combined Machine Learning with ANN [34], other combined
an ANN with Analog Ensemble (AnEn) technique [35] and
other than that, one combined the spatial modeling with
ANNs [36].

In this research, the forecasting of the power production of
a solar power plant located in Konya, Turkey will be carried
out for a short time interval through the ANN.
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I1l. METHODOLOGY

ANN model can be designed by following the number of
steps, the description of these steps are given below. A flow
chart for designing an ANN is shown in figure 1[37].
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Fig.1: Steps to Design an ANN

A. Collection of Data

The first step needed to design an ANN is the collection of
the data. The data used in this research is a real-time data,
collected from the Supervisory Control and Data Acquisition
(SCADA) center for the solar power plant located in Konya,
Turkey.

B. Pre-Processing of Data

The next step after collection of the data is to the fill the
places of missing data. The missing data in this research are
filled by following the method of linear regression. Also, the
normalization of data is good practice, if required to convert
the large values of data in the range of 0 to 1. In this research,
we used data with and without normalization to compare the
results. The sampled data set is shown in fig.2. In fig.2, the
columns start from A to H identifying the inputs factors which
are the daily basis average humidity, minimum, average and
maximum temperatures, average and maximum wind, solar
irradiance, and power generation values respectively

Next, the whole data set is divided into the training and
testing portions. The toolbox automatically divides the data
into training, testing and validation data sets but, we require
another set of data for further testing. In this research, we used
10 months data for training and 1-month data for further
testing.

A B c D £ F G H
7 9.6 16.7 234 16 102 613141 34824
8 52.5 11.1 16.6 22.1 2.1 9.2 6160.9 2615.28
9 45.4 12 168 221 3 113 520381 3753.04
10 a14 1 17 24 26 123 622837 3726.44
11 545 93 156 216 19 113 586159 3684.47
12 67.9 6.6 14 203 L1 102 427681 128539
13 688 105 142 205 12 133 608253  782.27
14 78 69 126 189 0.3 123 407106 2875.62
15 76.5 10.8 13.1 17.9 0.6 7.7 6508.69 374119
16 815 6 124 191 0.9 8.2 6437.44 128028
17 86.3 10 119 157 14 133 4189.02 3540.88
18 813 8.3 125 20.1 2 159 285331 3976.23
19 59.8 72 8.7 122 36 164 636352 220031
20 613 0.9 53 106 23 113 623738 1818.33
n 52.8 -14 g 169 0.8 46 618371 14424

Fig.2: Input Data Set

C. Building the Network

During this stage of design, the architecture of the ANN,
number of neurons, number of layers, activation functions and
learning algorithms are decided. In this research, since we
used toolbox so we can only choose the type of the toolbox
depending on the application and then it automatically creates
the network. We only changed the number of neurons that is,
in this research we used 100 hidden neurons.

D. Training the Network

At this stage of designing, a designer needs to give the input
data as well as the target data and the network then adjusts the
weight biases by itself so that it can learn to match the targets
with actual outputs. Also, the learning algorithms are to be
selected.

E. Testing the Network

Finally, in this stage, the learning of the network is to be
tested on the testing data set which is not exposed to the
network at first. To analyze the performance of the network
root mean square error (RMSE) and the mean bias error
(MBE) is checked. RMSE is the information of the short-term
performance that is a measure of the variation of forecasted
values from the measured data while MBE gives the
information of the long-term performance of the model, it is
an indication of the average deviation of the forecasted values
from the corresponding measured data. If the results are
satisfied then the network is ready otherwise the network is to
be retrained and re-tested.

IV. RESULTS

Since we discussed the designing of the ANN in neural net
fitting toolbox earlier, now we discuss the results got by using
3 techniques available in toolbox.

A. Training through Scaled Conjugate Gradient

Through the training of the network by using Bayesian
Regularization, the network is trained in 56 iterations. The
performance or mean squared error (MSE) of the network is
2.24e" . The gradient of the network is 4.07¢"" . The Table |
shows the sample values along with MSE and the Regression
values for training, testing and validation data.

Table | MSE and the Regression values for training, testing
and validation data.

Samples MSE Regression
Training 307 24857§f1r343296 9.4;8_(168
Validation | 17 | 419708430314 1 887526
Testing 17 29239:_9616154 9.4;2_1175

Fig.3 shows the error histogram and the regression analysis
of the trained network. In fig.3a, there is a graph which
identifies the instances in which error (errors = target - output)
occurs that is where the output misses the target. it also shows
the zero error margin. In this result, many values almost
missed the targets and are away from that zero margin means
the performance of the network is bad. in fig.3b, there is
analysis which basically shows how the output data fit to the
target data. The closer the regression value is to 1 that means
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the relationship between the output and the target is good. So
in this result, almost all the values are 0.9 except the
validation; hence this means the relationship is not bad
between the targets and outputs in this trained network.
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Fig.3a: Error Histogram"f'o'r Training Data
Fig.3b: Regression Analysis for Training Data

B. Testing through Scaled Conjugate Gradient

Next, the performance of the trained network is tested by
providing it new samples which were not given to the network
during training process. The MSE and Regression values for
testing data samples are 2357036.87842e~" and 6.74205¢~*
respectively.

Fig.4 shows the error histogram and the regression analysis
of the trained network on the testing data sample. in fig.4a,
there is a graph which results that many values almost missed
the targets and are away from the zero margin which means
the performance of this network is bad. in fig.4b, not many
output values fit to the target values as the regression value is
0.67, this means the relationship is bad between the targets
and outputs in this trained network.
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Fig.4a: Error Histogram for Testing Data
Fig.4b: Regression Analysis for Testing Data

C. Training through Levenberg-Marquardt

Through the training of the network by using
Levenberg-Marquardt, the network is 10 iterations. The
performance or MSE of the network is 3.56e~2*. The
gradient of the network is 8.27¢~". The Table Il below
shows the sample values along with MSE and Regression
values for training, testing and validation data.

Table Il MSE and the Regression values for training,
testing and validation data.
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are close to that zero margin means the performance of this
network is good. In fig.5h, almost all the values are 0.99;
hence this means the relationship is good between the targets
and outputs in this trained network.
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Fig.5a: Error Histogram for Training Data
Fig.5b: Regression Analysis for Training Data

D. Testing through Levenberg-Marquardt

Now the trained network is tested on the new samples
which were not given to the network during training process.
The MSE and Regression values for testing data samples are
869.15896e~" and 9.99642e~* respectively.

Fig.6 shows the error histogram and the regression analysis
of the trained network on the testing data sample. in fig.6a,
there is a graph which results that almost all the values of
output which missed the targets are close to that zero margin
except only one which means the performance of the network
is good on the unseen data. In fig.6b, almost all the output
values fit to the target values and the regression value is 0.99,
this means the relationship is good between the targets and
outputs in this network.
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Fig.6a: Error Histogram for Testing Data
Fig.6b: Regression Analysis for Testing Data
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E. Training through Bayesian Regularization

Through the training of the network by using Bayesian
Regularization, the network is trained in 1000 iterations. The
performance or MSE of the network is 0.0664 . The gradient
of the network is 419 .The Table 111 below shows the sample
values along with MSE and Regression values for training,
testing and validation data.

Table 111 MSE and the Regression values for training,
testing and validation data.

Samples | MSE Regression
Training 307 6.6370927% | 9.999999 e~*
Validation 17 0.000 e~" 0.000e~"
Testing 17 8.74735e™* 9.99999¢~*

Samples MSE Regression

Training 307 908.80788¢~" | 9.99981¢~*
Validation 17 973.00195¢~" | 9.99980¢~*
Testing 17 1777.00699¢~" | 9.99639¢~*

Fig.5 shows the error histogram and the regression analysis
of the trained network In fig.5a, there is a graph which results
that almost all the values of output which missed the targets

Fig.7 shows the error histogram and the regression analysis
of the network. in fig.7a, there is a graph which results that
almost all the values of output which missed the targets are
close to that zero margin means the performance of this
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network is good. in fig.7b, almost all the values are 1; hence
this means the relationship is very good between the targets
and outputs in this network.
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Fig.7a: Error Histogram for Training Data
Fig.7b: Regression Analysis for Training Data

F. Testing through Bayesian Regularization

Next, the trained network is tested on the new samples
which were not given to the network during training process.
The MSE and Regression values for testing data samples are
5.89484e% and 9.99999=~* respectively.

Fig.8 shows the error histogram and the regression analysis
of this network on the testing data sample. In fig.8a, there is a
graph which results that almost all the values of output which
missed the targets are close to that zero margin except only
one which means the performance of the network is good on
the unseen data. In fig.8b, almost all the output values fit to
the target values and the regression value is 1, this means the
relationship is good between the targets and outputs in this
trained network.
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Fig.8a: Error Histogram for Testing Data
Fig.8b: Regression Analysis for Testing Data

G. Comparison

The compariosn between all three traning algorithms used
to train an ANN is shown in Table V.

Table 1V Comparison between all three Traning
algorithms.
S. | Scaled Conjugate | Levenberg-Marqu Bayesian
No Gradient ardt Regularization
The network is The network is The network is
1 trained in 56 trained in 10 trained in 1000
iterations. iterations. iterations.
P MSE is very high. MSE is acceptable. MSE is very low.
Regression values Regression values Regression
3 are low. are acceptable. values are good.

The gradient is
4 very high.

The gradient is good.

The gradient is
acceptable.

The Performance
Parameter is very

The Performance
Parameter is good.

The Performance
Parameter is

high. acceptable.
Error histogram is Error histogram is Error histogram
6 bad. acceptable. is good.

I. CONCLUSION

Forecasting is an important task for power system
management. There are many researches in literature for more
accurate and easy solutions to forecast power and energy.

This research presented an easy and time-saving method by
using the MATLAB’s built-in toolbox to predict the
short-term production by the solar power plant as it does not
require any complicate modeling or heavy mathematical
calculations. Through this method, the production of any solar
power plant can be predicted by using an appropriate database
of that power plant.

According to the results of this research, error rates,
gradient and regression values of Levenberg-Marquardt and
Bayesian Regularization are very close to each other. But, it
can be concluded that Bayesian Regularization gave better
results as compared to other two algorithms by considering all
the factors.
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