
                                                                                
International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-10, Issue-12, December 2023 

                                                                                              11                                                                    www.ijeas.org 

 

  
Abstract— In this paper,we consider a new diffusion 

models for stock prices with applications in portfolio 
optimization to overcome the main restriction of the CEV 
model. The diffusion model combines constant elasticity of 
volatility(CEV) and stochastic volatility (SV) to create the 
CEV-SV model,while the SV component features the 
state-of-the-art 4/2 model.So that the complete correlation 
between the price of risky asset and its volatility is decoupled, 
and added randomness between the price of risky assets and 
their volatility.It can be clearly noticed that when 𝛃 = 𝟎,the 
CEV-SV Model degenerates to SV Model.We study an 
investment problem within expected utility theory (EUT) for 
incomplete markets, producing closed-form representations for 
the optimal strategy for two different cases of prices of risk on 
the stock.Finally,numerical examples are provided to support 
our theoretical results.We find that under the first risk price, 
the optimal investment strategy exhibits reduced stability and 
is more susceptible to stock price volatility.Therefore, it is 
advisable for different investors to adopt distinct investment 
strategies. Specifically, risk-averse or neutral investors may 
find it suitable to invest under the second risk price, while 
risk-loving investors may prefer investing under the first risk 
price.And the numerical simulation also tells us that the 
presence of CEV component incites a sharp downward 
movements in the optimal allocation toward short maturities. 

Index Terms—CEV-SV model, expected utility theory, two 
different cases of prices of risk.  
 

I. INTRODUCTION 
The literature on optimal investment within expected utility 
began in the late 60s,where the risky asset price was 
assumed as a geometric Brownian motion (GBM); see the 
celebrated work of Merton (1969)[1].Since then,many 
empirical studies have shown that this simple model cannot 
properly fit real market data. The main drawback is that the 
GBM does not capture implied volatility smile/skew effects 
from option prices.To address its limitation,a simple 
extension of the GBM is the so-called local-volatility 
constant elasticity of variance (CEV) model,originally 
proposed by Cox (1975)[2] and Cox and Ross (1976)[3] as 
an alternative diffusion process for European option 
pricing.Compared with the GBM,the merits of the CEV 
model are that the volatility rate correlates with the risky 
asset price,known as the leverage effect,and empirical biases 
such as volatility smile can be better 
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captured.Beckers(1980)[4],MacBeth and Merville 
(1980)[5],and Emanuel and MacBeth(1982)[6] presented 
some theoretical arguments as well as empirical evidence to 
support volatility changing with the stock price and a 
negative elasticity factor.The main application of the CEV 
process has been on derivative pricing (see,for instance,Cox 
(1996)[7]);Davydov and Linetsky 2001[8];Lo et 
al.2000[9]).As for portfolio optimization,Gao(2009)(10) 
explored the optimal investment problem for defined 
contributions (DC) retirement plans under a CEV model.The 
author derived the respective explicit solutions for the 
CRRA and CARA utility functions by applying the 
stochastic optimal control,power transformation,and 
variable change technique. However,one main disadvantage 
in the CEV framework is that volatilities and underlying 
risky asset prices are perfectly correlated.Much evidence 
currently exists of volatilities being correlated with but 
decoupled from stock prices (e.g., implied volatility 
structures and trading of volatility indexes).These stylized 
facts cannot be captured within constant elasticity of 
volatility models.To overcome this restriction,some 
researchers have proposed a time-varying elasticity 
parameter  β  (see Ghysels et al. 1996[11]; Harvey 
2001[12]). In particular, Kim et al. (2014)[13] introduced an 
extension of the CEV model named “stochastic elasticity of 
variance”(SEV). The authors relaxed the time deterministic 
elasticity assumption by allowing the elasticity to vary 
randomly,and hence decoupled the movements of implied 
volatility from the risky asset prices.  
In our research,inspired by Escobar-Anel et 
al.(2023)[14],we have developed a new approach to 
overcome the main restriction of the CEV model by 
combine constant elasticity of volatility (CEV) and 
stochastic volatility (SV) to create the CEV-SV model,while 
the SV component features the state-of-theart 4/2 model.So 
that it can better reflect empirical deviations such as the 
volatility smile in the market by linking volatility with risky 
asset prices.At the same time,it uses different characteristic 
factors to describe the implied volatility, which overcomes 
the shortcoming of the CEV model that volatility is 
completely related to risky asset prices.As is well known,SV 
models are capable of generating random volatility 
correlated with the stock price. The 4/2 model is a new 
popular stochastic volatility (SV) model that was first 
introduced by (Grasselli 2017[15]). It combines the classic 
(Heston 1993[16]) i.e.,the 1/2 (Heston) model and the 3/2 
model of (Heston 1997[17) and (Platen 1997[18]).By 
combining the two,the 4/2 model inherits the benefits of 
both 1/2 and 3/2 models while bringing additional benefits 
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such as an instantaneous volatility uniformly bounded away 
from zero and closed-form solutions for pricing derivatives 
(see, e.g.,Cui et al.(2017)[19], (2018)[20]).The diffusion 
part of the model is seen as the superposition of two 
independent volatility series. The first series is formed by 
the CIR process,and the second series follows a 3/2 
diffusion.So that the implied volatility can be described by 
factors with different characteristics,with the former having 
a mean-reversion that is independent of the factor level,and 
the latter being empirically more reasonable. Our new 
hybrid model is forming by introducing an instantaneous 
volatility of the form 𝑆!

!(𝑎 𝑣! +
!
!!
) for some constants 

a, b ,where 𝑣!  is the CIR factor.We denote this hybrid 
structure as the CEV-4/2 model.Besides,we introduced a 
new form of risk asset interest rates: 
r + (λ v! + λ!)𝑆!

!(𝑎 𝑣! +
!
!!
) ,where 𝜆 ≥ 0 ; 𝜆! ≥ 0  . 

λ v! + λ!  denotes the MPR (two choices of prices of 
risk).In this form, we link the interest rate of risky assets to 
the price and the volatility of risky assets,which is also in 
line with the real market.Generally speaking, high-price 
risky assets are always accompanied by high interest 
rates.The cases 𝜆 = 0  and 𝜆! = 0 will be considered 
separately. 
1. 𝜆! = 0 and 𝜆 ≠ 0.In this setting,the interest rate of risky 
assets becomes 

r +  𝜆𝑆!
!(𝑎𝑣! + 𝑏). 

2. 𝜆! ≠ 0 and 𝜆 = 0.In this setting,the interest rate of risky 
assets becomes 

r + 𝜆!𝑆!
!(𝑎 𝑣! +

𝑏
𝑣!
). 

In the first risk price, the risk asset interest rate is only 
controlled by the term 𝑣! ;while in the second risk price, the 
risk asset interest rate is controlled by the 4/2 term. 
Therefore, under the second risk price, the risk asset interest 
rate is more stable. The main contributions of the paper are 
as follows: 
1. we define a new diffusion models for stock prices with 
applications in portfolio optimization to overcome the main 
restriction of the CEV model ; 
2. In closed-form optimal investment, we find optimal 
wealth and value function for a risk-averse investor within 
expected utility theory, for two choices of prices of risk 
(MPR). 
The rest of this paper is organized as follows.In Section 
2,we set up the financial market structure and the investment 
problem;then derive a HJB equation by applying the 
dynamic programming principle. In Section 3, we obtain the 
optimal strategy under two different risk prices within 
expected utility theory.Then numerical analysis were 
conducted on the optimal strategy.Section 4 is the 
conclusions. 
 

II. MATERIALS AND METHODS 

A. Model Formulation:The optimization problem 
Assume that a financial market consists of one risk-free 
asset and one risky asset (i.e.,stock),Let all the stochastic 
processes introduced in this paper be defined on a complete 

probability space  (Ω,ℱ,ℙ, {ℱ!}!∈[!,!]),where {ℱ!}!∈[!,!] is a 
right-continuous filtration generated by standard Brownian 
motions (BMs). We assume that the price process of the 
risk-free asset 𝐵! evolves according to 
dB! = rB!dt,                                    (1) 
where the interest rate r is assumed to be constant. The price 
processes 𝑆! of the risky asset follows the hybrid structure of 
what we defined as an CEV-4/2 model 
!!!
!!
= [𝑟 + (λ v! + λ!)𝑆!

!(𝑎 𝑣! +
!
!!
)]dt 

+𝑆!
!(𝑎 𝑣! +

!
!!
)(𝜌dZ!" + 1 − ρ!dZ!"),        (2) 

where 𝑠! > 0.  The stochastic factor 𝑣!  satisfies the 
following stochastic differential equation(SDE) 

dv! = κ(θ − v!)dt + σ v!dZ!",       v! > 0,       (3) 
With r, θ, κ, σ ∈ ℝ!;  β ≤ 0;  λ ≥ 0;  λ! ≥ 0;  𝑎 ≥ 0 ; and 
b ≥ 0 .Moreover, 𝑠!, 𝑣!  are initial values; 𝑍!,𝑍!  are 
independent Brownian motions. In this setting, the MPR 
becomes (λ v! + λ!); therefore the cases 𝜆 = 0 and 𝜆! = 0 
will be considered separately. 
  Our model permits a risk-neutral pricing measure ℚ, which 
we identify via the change of measure: 

dZ!,! = dZ!,!
ℚ − λ! v!dt 

dZ!,! = dZ!,!
ℚ − (λ! v! + λ!,!)dt            (4) 

dZ!,! = dZ!,!
ℚ − λ!,!dt, 

 
Where dZ!,!,   i = 1, . . . ,3  are independent standard 
Brownian motions under ℚ.This means,as per the notation 
in (2), that 𝜆 = 𝜌𝜆! + 1 − 𝜌!𝜆! and 𝜆! = 1 − 𝜌!𝜆!,! , 
Proposition 1. The following conditions are needed for the 
change of measure in (4) to be well defined: 

2𝜅𝜃 ≥ 𝜎! 
κ + λ!σ > 0                                          (5) 

max | λ!|, |λ!| <
κ
σ

 

See Escobar-Anel et al.2023 for a proof. 

B. Hamilton-Jacobi- Bellman Equations 
We invest in the stock and a cash account 𝐵! ;𝜋! is the 
proportion of wealth allocated to the stock, and (1 −
π!)hence goes to cash. Using the self-financing condition, 
the wealth process for this investor under the real-world 
measure ℙ is given by 

dX!
X!

= 𝜋!
dS!
S!

+ (1 − π!)
dB!
B!

 

= [r + 𝜋!(λ v! + λ!)𝑆!
!(𝑎 𝑣! +

𝑏
𝑣!
)]dt     (6) 

+𝜋![𝑆!
!(𝑎 𝑣! +

𝑏
𝑣!
)(𝜌dZ!" + 1 − ρ!dZ!")], 

where 𝑥! = 𝑥 > 0 is an initial wealth. 
     For all (x!, v!)ϵℝ!×ℝ! and tϵ[0,T],we assume that the  
(6) has a pathwise unique solution {X!!}!![!,!]  under the 
real-world measure ℙ. Let us define 
U(x, v):= {π:= (π!)!![!,!]|π as progressive measures, 

X(0) = x!, v! = v,𝔼!!,!!,!!
ℙ [u(X!)] < ∞, },          (7) 

where 𝔼!,!,!ℙ [∙] = 𝔼ℙ[∙ |𝑋! = 𝑥, 𝑣! = 𝑣]  denotes the 
conditional expectation. 
To seek the optimal investment strategy 𝜋!,we maximize the 
expected utility of the terminal wealth 
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V(t, x, v) = max
!!!!

𝔼!,!,! [U(X!)],          0 < t < T       (8) 

where U(∙) is the expected utility function. 

U(x) = −
e!!"

q
, q ≠ 0. 

That is increasing and concave. V(t, x, v) is the value 
function,and U(x, v) denotes the space of admissible trading 
strategies.By using the dynamic programming approach,we 
obtain the form of optimal investment strategy 𝜋!∗ and the 
Hamilton-Jacobi-Bellman(HJB) equation for this 
optimization problem,with boundary condition 

V(T, x, v) = −
e!!"

q
. 

To reduce the complexity of the problem,make a change of 
control: 

𝜓! = 𝜋!𝑆!
!(𝑎 𝑣! +

𝑏
𝑣!
),                        (9) 

The problem of interest under this new control becomes 
V(t, x, v) = max

!
𝔼!,!,![U(X!)] = max

!
𝔼!,!,![U(X!)], 

with wealth process as follows 
dX!
X!

= (r + ψ!(λ v! + λ!))dt + ψ!(𝜌dZ!" + 1 − ρ!dZ!") 

dv! = κ(θ − v!)dt + σ v!dZ!",       v! > 0.                      (10) 
The HJB equation associated with the optimization problem 
is given by the partial differential equation(PDE) 

0 = sup
!
V! + κ(θ − v)V! +

1
2
σ!vV!! + x(r + ψ(λ v!

+ λ!))V! +
1
2
x!ψ!V!! + xψσρ vV!"

= V! + κ(θ − v)V! +
1
2
σ!vV!!

+ sup
!
x(r + ψ(λ v! + λ!))V!

+
1
2
x!ψ!V!!

+ xψσρ vV!" ,                 (11) 
with the final condition V(T, x, v) = U(x). Here,each V with 
the subscript denotes the partial derivative with respect to 
the corresponding variables.From (11),it is immediately 
observed that the first order maximizing condition for the 
optimal strategy 𝜓∗ is given by 

𝜓∗ = −
𝑥(λ v! + λ!)V! + xσρ vV!"

𝑥!𝑉!!

= −
(λ v! + λ!)V!

�𝑉!!

−
σρ vV!"
𝑥𝑉!!

.           (13) 

In the next section,we will obtain the optimal strategy under 
two different risk prices within expected utility theory,and 
illustrate the dynamics of optimal investment strategy . 

III. RESULTS 
A. Portfolio Problem and Solution  
To find the solution of  (13),we use the separation ansatz 

V(t, x, v) = −
1
q
exp{−q[a(t)(x − b(t)) + h(t, v)]},       (14) 

with  a(T) = 1,     b(T) = 0,   h(T, v) = 0. 
We assume b(t) = 0 in (14) for simplicity. Then,using 

𝑉! = (𝑎!𝑥 + ℎ!)exp{−q(a(t)x + h(t, v))} 

𝑉! = ℎ!exp{−q(a(t) + h(t, v))} 
𝑉! = 𝑎(𝑡)exp{−q(a(t)x + h(t, v))}              (15) 

𝑉!! = (ℎ!! − 𝑞ℎ!!)exp{−q(a(t)x + h(t, v))} 
𝑉!" = −𝑞𝑎(𝑡)ℎ!exp{−q(a(t)x + h(t, v))} 
𝑉!! = −𝑞𝑎(𝑡)!exp{−q(a(t)x + h(t, v))} 

Thereby,substituting (15) into (12),we have 

𝜓∗ =
λ v! + λ!
𝑎(𝑡)�𝑞

−
𝜎𝜌 𝑣ℎ!
𝑎(𝑡)𝑥

                          (16) 

Substituting the ansatz into the HJB equation yields 

𝑎!𝑥 + 𝑎(𝑡)𝑟𝑥 + ℎ! + 𝜅(𝜃 − 𝑣)ℎ! +
1
2
𝜎!𝑣ℎ!! −

1
2
𝜎!𝑣𝑞(1

− 𝜌!)ℎ!! +
1
2𝑞
(λ v! + λ!)! − σρ v(λ v!  + λ!)h!

= 0.                                                                                       (17) 
Further,we can decompose (17) into two equations 

𝑎!𝑥 + 𝑎(𝑡)𝑟𝑥 = 0,                                 (18) 

ℎ! + 𝜅(𝜃 − 𝑣)ℎ! +
1
2
𝜎!𝑣ℎ!! −

1
2
𝜎!𝑣𝑞(1 − 𝜌!)ℎ!!

+
1
2𝑞
(λ v! + λ!)! − σρ v(λ v!  

+ λ!)h!
= 0,                                                             (19) 

with a(T) = 1, h(T, v) = 0. The solution of  (18) can be 
given by 

a(t) = e!(!!!)                                    (20) 
Proposition 2. The solution to  (19) is provided next in two 
cases: 

! Assume 𝜆! = 0 and 𝜆 ≠ 0;The value function (19) can 
be expressed as (21), 

h(t, v) = K!κθ(T − t),                        (21) 
with 

𝐾! =
−(𝜅 + 𝜎𝜌𝜆) ± (𝜅 + 𝜎𝜌𝜆)! + 𝜎!𝑞!(1 − 𝜌!)𝜆!

𝜎!𝑞(1 − 𝜌!)
. 

Then, 

𝜓!∗ =
𝜆 𝑣

𝑒!(!!!)𝑥𝑞
.                                   (22) 

Furthermore,the optimal strategy 𝜋!∗ under the real-world 
measure ℙ is given by 

𝜋!∗ =
𝜓!∗

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)
=

𝜆 𝑣

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)𝑒!(!!!)𝑥𝑞

.    (23) 

! Assume 𝜆! ≠ 0 and 𝜆 = 0;The value function (19) can 
be expressed as  (24), 

ℎ(𝑡, 𝑣) =
1
2𝑞
𝜆!!(𝑇 − 𝑡)                         (24) 

𝜓!∗ =
𝜆!

𝑒!(!!!)𝑥𝑞
                               (25) 

Furthermore,the optimal strategy 𝜋!∗ under the real-world 
measure ℙ is given by 

𝜋!∗ =
𝜓!∗

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)
=

𝜆!

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)𝑒!(!!!)𝑥𝑞

      (26) 

Proof 1.  The proof is presented in Appendix A. 
 
B. Numerical analysis 
From C,it can be seen that the optimal solution to the 
portfolio problem depends on the parameters of the 
model.We illustrate the dynamics of an optimal investment 
strategy 𝜋!∗ with CARA utility at time points t = 0,1,2.In 
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these examples,for convenience,we assume that all of the 
duration dates are T = 3 and 𝜆! = 0 . In our model, 9 
parameters are required: r, 𝜆, 𝑎, 𝑏, 𝜌,𝛽, 𝜅, 𝜃,𝜎. We propose 
values for these parameters via a combination of two 
reliable sources on the embedded key models: the CEV and 
the 4/2.The hybrid structure not only possesses new features 
but also inherits some characteristics of each of the two 
models.The parameters 𝜆, 𝑎, 𝑏, 𝜌, 𝜅, 𝜃,𝜎  are inherited from 
the 4/2 model,and their estimates were already obtained by 
(Cheng and Escobar-Anel 2021),and the parameters 𝛽 was 
obtained by(Sung-Jin Yang and Kim 2013). 
 
Parameters Estimation 

r 0.05 
q 0.05 
𝜆 2.9428 
a 0.9051 
b 0.0023 
ρ 0.7689 
κ 7.3479 
σ 0.6612 
β 0.5 

Theoretical leverage(v! = θ) -0.76889 
 
Table1:Estimates among the various models. 
 
Table. 1 displays these parameter values. Fig. 1-3 ,we 
present numerical analysis for the optimal investment 
strategy 𝜋!∗ by shifting the value of a certain parameter and 
holding all other parameters constant. 

Figure 1: The impact of r on π!∗  

 
Figure 2: The impact of q on π!∗  

 
Figure 3: The impact of β on π!∗  
 
 Fig. 1 plots the optimal proportion 𝜋!∗ by shifting parameter 
r, which shows the effect of interest rates on the value of 𝜋!∗ 
.Fig. 1 shows that as the interest rate increases,the optimal 
proportion of investment on the risky asset would decrease 
correspondingly.  
In Fig. 2-3,parameter q denotes the risk aversion coefficient 
of investors,parameter 𝛽 denotes the elasticity of volatility 
coefficient.These figures show that the larger the value of q 
and 𝛽 ,the smaller proportion of investment in the risky 
market.The investment proportion is a decreasing function 
of the risk aversion coefficient qand 𝛽.And the CEV-SV 
Model degenerate to SV Model when 𝛽 = 0,which means 
the presence of CEV component incites a sharp downward 
movements in the optimal allocation toward short 
maturities.  

IV. SUMMARY AND CONCLUSIONS 
This paper presents the first portfolio optimization analysis 
using a hybrid structure of the CEV and SV models.We 
obtained closed-form solutions for the optimal strategy 
within EUT for two choices of prices of risk.And provide 
numerical analysis to illustrate the effect of the model 
parameters on the optimal investment strategy.The results 
shows that the optimal investment strategies calculated 
under two different risk prices were very similar, except that 
the optimal investment strategy under the first risk price had 
an additional factor of 𝑣. This also suggests that under the 
first risk price, our optimal investment strategy is less stable 
and susceptible to stock price volatility, but high risk also 
equates to high returns. Therefore, it is recommended that 
different investors adopt different investment strategies, for 
example, for risk-averse or neutral investors, it is suitable to 
invest under the second risk price; for risk-loving investors, 
it is suitable to invest under the first risk price.And we find 
that the CEV-SV Model degenerates to SV Model when 
β = 0,which means the presence of CEV component incites 
a sharp downward movements in the optimal allocation 
toward short maturities. 
 Our analysis can be extended to solve the investment 
problems in the presence of transaction costs,stochastic 
affine interest rates,and the other uncertain factors,which 
will involve more complicated HJB equations to solve. We 
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leave this work for a future study. 
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APPENDIX 
! Organize (17) by v yields 

0 = h! + κθh! + v[−κh! +
1
2
σ!h!! −

1
2
σ!q(1 − ρ!)h!!

− σρλh!
+
1
2q
λ!]                                  (A. 1) 

Further, we can decompose (A.1) into two equations 
ℎ! + 𝜅𝜃ℎ! = 0                                 (𝐴. 2) 

−κh! +
1
2
σ!h!! −

1
2
σ!q(1 − ρ!)h!! − σρλh! +

1
2q
λ!

= 0                                                           (A. 3) 
The value obtained from the second derivative of function  
h can be ignored. Therefore, for the convenience of calcu- 
lation, here we assume !

!
𝜎!ℎ!! = 0. 

Thereby, we here 
1
2
𝜎!𝑞(1 − 𝜌!)ℎ!! + (𝜅 + 𝜎𝜌λ)h! −

1
2q
λ! = 0         (A. 4) 

This is a quadratic equation about ℎ! ,and the solution is  

ℎ! =
−(𝜅 + 𝜎𝜌𝜆) ± (𝜅 + 𝜎𝜌𝜆)! + 𝜎!𝑞!(1 − 𝜌!)𝜆!

𝜎!𝑞(1 − 𝜌!)
:

= 𝐾! 
 
                                                                                    (A.5) 
With h(T, v) = 0, we can get 

h(t, v) = K!κθ(T − t)                              (A. 6) 

𝜓∗ =
𝜆 𝑣

𝑒!(!!!)𝑥𝑞
                                  (𝐴. 7) 

As (7),we get 

𝜋∗ =
𝜓∗

𝑆�(𝑎 𝑣 + 𝑏
𝑣
)
=

𝜆 𝑣

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)𝑒!(!!!)𝑥𝑞

     (𝐴. 8) 

! Organize (17) by v and 𝑣  yields 

0 =
1
2q
λ!
! + h! + κθh! + v[−κh! +

1
2
σ!h!! −

1
2
σ!q(1

− ρ!)h!!] − σρ vλ!h!                          (A. 9) 
Further, we can decompose (A.9) into three equations 

1
2𝑞
λ!
! + h! + κθh! = 0 

−κh! +
1
2
σ!h!! −

1
2
σ!q(1 − ρ!)h!! = 0       (A. 10) 

σρ vλ!h! = 0 
With h(T, v) = 0, we can get  

h(t, v) =
1
2q
λ!
!(T − t)                       (A. 11) 

𝜓∗ =
λ!

𝑒!(!!!)𝑥𝑞
                              (𝐴. 12) 

As (7), we get 

𝜋∗ =
𝜓∗

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)
=

λ!

𝑆!(𝑎 𝑣 + 𝑏
𝑣
)𝑒!(!!!)𝑥𝑞

    (𝐴. 13) 
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