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ABSTRACT - The kernel based nonparametric HAC 
estimation methods have been suggested as alternative to PCSE 
for panel data with heteroscedasticity, serial and spatial 
correlations, But the two commonly used kernel functions –the 
truncated and Bartlett functions for kernel based HAC 
estimations are too restrictive and that they yield negative bias 
and that such bias could be substantial in finite samples In this 
study, the error structure of the PCSE was modified with the 
introduction of two new kernel functions -.the Parzen kernel and 
Turkey-Hannings kernel functions and a non-linear weight was 
defined for them. Using  simulated data for varied levels of 
heteroscedasticity, serial and spatial correlations, varying spatial 
weight matrix specification and different cross-sectional and 
time dimensions, the performances of these two new kernel 
functions were compared with Bartlett kernel ,the truncated 
kernel functions and the PCSE’ Using absolute bias (AB), 
residual variance (RVar) and the root mean squares error 
(RMSE)  as assessment criteria, the performances of these 
estimators were determined The results from the study showed 
that the kernel based nonparametric approach performed better 
than the PCSE and that the Bartlett kernel, the Turkey-Hanning 
kernel and the Parzen performed better in the presence of 
heteroscedasticity, serial and spatial correlations . However, the 
Tukey-Hannings kernel was generally more preferred for small 
sample sizes, narrow spatial weight matrix specifications and for 
short panels N>T), while the Parzen kernel estimator performed 
better for long panels (N<T) and wider spatial weight matrix 
specifications .The Bartlett kernel functions however, performed 
better than the Turkey-Hanning and Parzen kernels generally 
for large sample sizes, wider spatial weight matrix specifications. 
From the results the study concludes that the performances of 
the different estimators were generally influenced by the type of 
panel data, the size of the cross-sectional and time dimensions 
and the spatial weight matrix specifications  
	

KEYWORD: Panel Data, heteroscedasticty, serial 
correlation, spatial Dependence, kernel Estimators 
 

I. INTRODUCTION 
Panel data are data sets that consists of repeated measures of 
the same variable, taken from the same set of units over time 
(Woodridge, 2002, Baltagi, et al., 2008, and Gujarati, 2009) 
.The cross-section units may consist of individuals, firms, 
states, regions or countries, while the time units may be years, 
months, days or any other time expression such as hours, 
minutes or seconds (Baltagi, 2013).. Panel data therefore 
involves both the cross sectional and time dimensions and 
therefore combines the characteristics of both cross sectional 

and time series data. (Baltigi, et al.,, 2008, Greene, 
2012..However, due to the presence of these two 
complementary dimensions,, panel data typically provide 
sufficient observations and consequently more sample 
variability, decrease collinearity problems among the 
explanatory variables and increase in degree of freedom  
(Hsiao 2003, Baltagi and Li,  2004).  

However, despite the advantages and wide use of panel data 
for empirical research, heteroscedasticity and serial 
correlation have long been identified as potential problems  
Baltagi,, et al., 2005 and Garba, et al., 2014,). But in recent 
times, there is the growing concern among panel data 
researchers that panel data may also contain some form of 
spatial dependence (Anselin, 1988, Elhorst, 2003). Thus while 
some panel data researchers are concerned with the problems 
of heteroscedasticity and serial correlation, some others are 
strictly restricted to the  problem of spatial dependence with  
little or no considerations for the simultaneous presence 
heteroscedasticity, serial and spatial  correlations.  

Just like the presence of heteroscedasticity and serial 
correlation or spatial dependence,  in the face of 
heteroscedasticity, serial and spatial correlations,, the 
assumptions of identical and independent distributions of the 
errors is violated . In that case, the error terms across the cross 
– sectional units are no longer uniform or constant, and also 
no longer independence over time and across the cross -
sectional units. The implications of this is that the standard 
panel data estimation procedures may be invalid and could 
lead to serious bias and inefficiency in the estimation 
methods. 

But available estimation methods are either robust to 
heteroscedasticity and serial correlation on the one hand or 
robust to spatial dependence with no estimation methods 
available to directly accounts for heteroscedasticity, serial 
correlation and spatial dependence .However, two procedures 
are available in the literature for resolving this challenge. The 
first approach makes use of the generalized least square 
(GLS) estimator (see Park, 1970). Though the GLS procedure 
produces coefficient and standard error estimates that are 
efficient and unbiased respectively, but this approach is only 
appealing if the covariance structure is correctly specified and 
the elements of the error covariance matrix are known (Beck 
and Katz, 1995).  However, in most cases, the form of the 
error structure is unknown or the true value for the variance-
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covariance is unknown, thus making this approach very 
unappealing (Reed and Ye, 2009) 

The second approach is the standard error approach .This 
approach is appealing because estimating panel data models 
using conventional panel data estimators generate inefficiency 
in coefficient estimation and bias standard errors. For accurate 
inference in such models, it is essential to use covariance 
matrix estimators that can consistently estimate the covariance 
of the model parameters. This approach required an 
adjustment of the standard error in other to obtain an unbiased 
standard errors of OLS in the presence of heteroscedasticty, 
serial correlation and spatial dependence is obtained. The  
most popular of these robust standard error approach or 
covariance matrix estimators are the  Huber (1967),, Eicker, 
(1967), White, (1980) and Newey and West 1987) estimators 
developed to addressed the problems  of heteroscedasticity 
(HC) in cross sectional settings and heteroscedasticity and 
serial correlation (HAC) in time series settings .But for panel 
data settings with heteroscedasticity and serial correlation as 
well as spatial correlation, Beck and Katz (1995) suggested 
the use of OLS coefficient estimates in combination with the 
panel structure of the data called the panel corrected standard 
error (PCSE). Though, the PSCE is widely used  and performs 
well when the number of time periods (T) is close to, or equal 
to the number of cross-sections (N), but the PCSE 
underperforms with substantial loss in efficiency when T > 
N). The PCSE is said to be also biased, hence statistical 
inferences based on them are invalid (Hoechle, 2007).  

However,  Driscoll and Kraay (1997) has proposed a class of 
nonparametric method based on kernel which is said to be 
applicable when parametric description of the data is not 
sufficiently adequate. This kernel based procedures attends to 
nonzero covariance between the cross-sectional units and 
unequal variance by weighting through a kernel smoother 
function where the weights are determined by the kernel 
function and bandwidth (Millo, 2017).  Though a range of 
kernel functions are available in the literature, but the 
truncated kernel, the Bartlett kernel, the Parzen kernel, the 
Turkey-Hanning kernel and the Quadratic spectral kernel are 
more desirable for HAC procedures because of their 
properties which are symmetric and guarantee positive semi-
definiteness. (Andrew1991) . 

Even though the truncated kernel, the Bartlett kernel, the 
Parzen kernel, the Turkey-Hanning kernel and the Quadratic 
spectral kernel are more desirable for HAC procedure,  but the 
Truncated kernel and Bartlett kernel functions are the two 
most commonly used kernel function for the HAC 
procedures.. White, (1980) and Arellano (1987) for instance 
assigns unit or constant weights using truncated kernel. to all 
autocovariances up to the lag truncation point while Newey 
and West (1987) and Drisscoll and Kraay (1998) respectively 
assigned a decreasing weight to all autocovariances using 
Bartlett kernel   

However, the Truncated and Bartlett kernel does not ensure a 
positive semi-definite covariance matrix and that they are too 
restrictive and yield negative bias that such bias could be 
substantial in finite samples (Andrew, 1991). Andrew and 
Monahan (1992.) therefore, suggested the need for larger class 
of kernel estimator for an improved HAC estimation .In this 
study, the error structure of a panel corrected standard was 
modified with a kernel function .Two new kernel functions 
were introduced and a non-linear weight matrix defined for 
the two kernel functions.  The performances of the new kernel 
function in comparison with the widely used kernel functions 
were assessed. Secondly, the effects of different cross- 
sectional and time dimensions on the performance of the 
different kernel HAC estimators were determined and finally 
the effects of different spatial weight matrix specifications on 
the performance of the different kernel HAC estimators were 
also assessed since a distance measure in the cross-section is 
needed to implement this kernel base approach (Kin, 2010). 
 

II. SOME ESTIMATION METHODS FOR PANEL 
DATA MODEL WITH HETEROSCEDASTICITY, 

SERIAL AND SPATIAL CORRELATIONS 
	

2.1:	Standard	Panel	Data	Estimators	

A diversity of estimation methods are available in the 
literature for estimating panel data (Reed and Ye, 2007). The 
Ordinary Least Square (OLS) for instance exhibit an 
important downward bias and have the worst performance 
when compared to the other estimators in the presence of 
heteroscedasticity, serial correlation and spatial dependence 
(Vogelsang, 2012).  

For heteroscedasticity and serial correlation in panel data 
Baltagi, et.al, (2007), Olofin,et al,.(2010) and  Garba, et.al, 
(2014) concluded the fixed and random effects estimators are 
invalid and lead to serious bias and inefficient . Similarly, in 
the presence of spatial dependence, Baltagi, et al. (2012) 
revealed that in the presence of large spatial coefficient, the 
ordinary panel data estimators’ leads to misleading inferences. 
However, a major weakness with these common panel data 
model estimation methods is that they performed poorly in 
the presence of heteroscedasticity, serial correlation and 
spatial dependence  

2.2: The Feasible generalized least square (FGLS)  

In an earlier attempt to account for heteroscedasticity, serial 
correlation and spatial dependence in the residuals, Park 
(1967) proposed a feasible generalized least square (FGLS). 
This procedure is in two steps. Firstly the serial correlation is 
eliminated after which the spatial correlation is eliminated. 
The process obtains residual from the OLS estimates; this 
residual is then used to estimate the panel specific correlation 
coefficient which in turn is used to transform the model into 
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one with serial independent errors.  Secondly the residuals 
from these estimates are then used to estimate the spatial 
correlation coefficient which again is transformed to allow for 
OLS estimation with independent errors that have constant 
variance.   

However, the Park (FGLS) method is infeasible if the panel’s 
time dimension (T ) is smaller than its cross-sectional 
dimension ( N ) because the associated error variance-
covariance matrix (EVCM) cannot be inverted, that is, the 
problem of singularity. Secondly, Beck and Katz (1995) show 
that the Park method tends to produce unacceptable small 
standard errors. Therefore, to get reliable estimates of the 
sample population, the need to consider the standard error 
which helps to examine the accuracy of the estimates have 
become necessary.  

2.3: Panel Corrected Standard Errors Estimator (PCSE) 

Beck and Katz (1995) introduced the panel corrected standard 
errors (PCSE) and suggested estimating panel data by OLS 
.They proposed a sandwich type estimator of the covariance 
matrix of the estimated parameter which they called Panel-
corrected standard errors (PCSE) that is robust to non-
spherical errors (Bailey and Katz, 2011). Beck and Katz 
considered a panel model of the form: 

 
( )NTtXY tttt ,...1,...11111 ==++= εββ

                             
   (1) 
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   (2)

 

 
Where  and M ρ are weight matrix and scalar autoregressive 

parameter respectively? ( )~ . . 0, .it NTi i d∈ Ω   

Back and Katz (1995) original formulation of panel data 
model consists of (i) heteroscedasticity; (ii) serial correlation 
and (iii) spatial dependence. 
The variance was expressed as,
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While the error component NTΩ  was modeled to be of the 
form:  
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Where, Σ  caters for heteroscedasticity and serial correlation 
and ρ is scalar autoregressive parameter which cater for the 
spatial correlations.  Though, the PCSE is popular and widely 
used for panel data model with heteroscedasticity, serial 
correlation and spatial dependence. However, the panel 
corrected standard error (PCSE) are biased hence statistical 
inferences based on them are invalid (Hoechle, 2007). 
Therefore to improve the standard errors and correct for the 
problems of heteroscedasticity, serial correlation and spatial 
dependence, Driscoll and Kraay (1997) proposed a class of 
nonparametric method based on kernel.          

2.4: Kernel-Based (HAC) procedures for 
heteroscedasticity, serial and spatial correlations 

Newey and West (1987) were the first to introduce the kernel 
function to address the problems of heteroscedasticity and 
serial correlation in time series settings.  
The variance of the time series model with heteroscedasticity 
and serial correlation as expressed by Newey-West (1987) is 
as presented below 
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Where 
1

1
+

−
m
m

  
  is the weight and m is i the maximum 

lag.  M +1 is the bandwidth and m is the maximum lag 
specifically, as m gets larger (and thus father from t, we give 
the correlation between te  and 1−te  less weight. The 
bandwidth parameter defines the weight, and thus determines 
the degree of smoothing applied to the data.  
Newey-West (1987) assigns a weight using the Bartlett kernel 
function.   
The Bartlett kernel function  is define as 

( ) {1 ,             0
0                  
x a if x

OtherwiseK x − ≤=
                                              (7)

                                                                                   

Where :x is the distance from the kernel center and a is the 
bandwidth parameter that determines the range of the kernel 
function that assigns a weight to each data point based on its 
distance from a target point. But Newey and West (1987) 
kernel based procedure was restricted only to problems of 
heteroscedasticity and serial correlation in time series settings. 
  
 In panel data setting, White-Arellano, (1987) developed a 
consistent HAC estimator using the cluster standard errors 
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with truncated kernel to smoothing out serial correlation and 
spatial correlation (Vogelsang, 2012).  
The variance was expressed as,            
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While the variance –covariance matrix is as expressed below  
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Is the kernel function  
White-Arellano (1987) assign weights using truncated kernel 
and is reported to be the simplest method that yields constant 
estimates of the spectral density.  
The truncated kernel is defined as; 
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The truncated kernel function assigns weights of unity on all 
auto-covariance up to the lag truncation point.  

Unfortunately, the lag truncated kernel does not necessary 
yields a positive semi-definite which therefore limits its 
usefulness

  
 

Driscoll and Kraay (1998) adapted the Newey-West estimator 
to a panel data context, where not only serial correlation 
between residuals from the same individual in different time 
periods is taken into account, but also cross-serial correlation 
between different individuals in different times and, within 
the same period,.  
They express the variance as 
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while the variance –covariance matrix is as expressed as
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Where K is expressed as  

                 1
1

+
−=
L

W ℓ
ℓ

                                                                                            

                                                                                          (14)    
Driscoll and Kraay (1998) the Bartlett kernel function (K) 
with a linearly decaying weight.. Unfortunately, the Bartlett 
kernel on the other hand is reported to yield negative bias and 
such bias could be substantial in finite samples (Andrew, 
1991).Therefore the need for an alternative kernel function 
becomes necessary  

III. MATERIALS AND METHODS 

3.1: Methodology 

Adopting Beck and Katz (1995) original formulation of panel 
data model which consists of (i) heteroscedasticity; (ii) serial 
correlation and (iii) spatial dependence with an error 
component NTΩ modeled in the form:   

Where   NTΩ = ⊗∏∑      
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The modified error structure consists of (1) heteroscedasticity 
(2) serial correlation (3) spatial correlation and (4) kernel 
function.  Two new kernel functions were introduced-  the 
Parzen kernel and the Turkey-Hanning kernel functions 
The Parzen kernel function is expressed as;
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And the Tukey-Hannings kernel function is defined 
mathematically as: 
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Therefore, the modified error component NTΩ  was modeled 
to be of the form
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 Equation (17) can be further expressed as  
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Where the structureΣ ,∏ , ⊗  is as defined above and K  is 
expressed as kernel function . Since the kernel (K) determines 
the weighting scheme, a generalized weight for K as 
suggested by Andrew (1991) was adopted    
According Andrew (1991)  
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Equation (19) was adjusted to a non-linearly weight as 
expressed below for Parzen kernel and Tukey-Hanning kernel 
functions respectively as 
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Recall the variance of  PCSE 

( ) ( ) ( ) ( ) 11 '''ˆ −− Ω= XXXXXXVar NTβ                                                                                         
Where the variance –covariance matrix is  

 NTΩ = ⊗∏∑        
 While the new variance-covariance matrix is as expressed 
bolow

 

Where KNT ⊗∏⊗Σ=Ω                                                                                                           
KNT ⊗∏⊗Σ=Ω PARZ                                           (22)                                                                                

While equation (22) is the variance-covariance matrix for 
Parzen kernel  

KNT ⊗∏⊗Σ=Ω TUK                                             (23)                                                                                     
And equation (23) is the variance-covariance matrix for the 
Tukey-Hanning kernel 
3.2: Data used for the Study  
Monte-Carlo studies were carried out at different sample sizes 
(10, 50, 150), 3 different spatial weight matrices (distance 
bands and k nearest neighbourhood; for k = 10 and k = 50), 
five different levels of spatial dependence (±0.5, 0, ±0.9); five 
different levels of serial correlation (±0.5, 0, ±0.9) and 

varying degree of spatial heterogeneity (low, mild and 
severe); all at different time periods (20, 40).  

The data generating process follows from the model below 

2,1,,...2,11
1
11 ==++= tniuaXy titt β  

                                                  
(24)                           

where y is a [ 1]N ×  vector representing the exogenous 

variable, X is a [ ]N N×  matrix of spatially correlated 
explanatory variables, β  is a [ 1]N × vector of regression 
co-efficient, ε  is the individual-specific error component  
represented as [ 1]N × vectors of error terms and itµ  is the 
combined time-series and cross-section error component with 

variances 2
εσ  and 2

µσ  respectively.                                                                         

For the spatial autoregressive parameters, we employ 
combinations of ρ = (0.9; 0.5; 0; -0.5; -0.9) to allow for weak 
and strong spatial interactions. To generate the 
heteroskedastic errors, we follow Kelejian and Prucha (2010) 
and consider small group interactions structure for the spatial 
weight matrix to allow for an expansive drift across the 
dataset; and for serial correlation, first-order serial correlation 
AR (1) was used to implant serial correlation into the model 
as did by Lillard and Wallis (1978), Bhargava et al. (1983) 
e.t.c.  Following the recommendations of Kelejian and Prucha 
(2010), spatial heterogeneity was simulated by applying a 
cholesky transformation on the weighted matrix `W` into the 
simulated spatial dependence covariates in the presence of an 
unobserved covariate (random noise), ~ (0, )nN Iε σ .  

 The final model is represented as: 

nnniinin yWXy µλβ ++=                        (25)                                                                            

nnnn uM ερµ +=                                                    (26)                                                                           

where ny  is the 1n×  vector of observations on the 

dependent variable, nX  is the n k× matrix of observations 

on k  exogenous variables,  and n nW M are n n×  spatial 

weighting matrices of known constants, β  is the 1k × vector 

of regression parameters, λ and ρ are scalar autoregressive 

parameters, nµ  is the 1n× vector of regression disturbances, 

and nε  is an 1n× vector of innovations. The variables 

 and n n n nW y M µ are typically referred to as spatial lags of 

 and n ny µ  respectively..      
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Estimation methods used for the study 

 
The following estimation methods was used for the simulated 

data: (1) Panel Corrected Standard Error (PCSE) (2) 

Truncated kernel (3) Bartlett kernel (4) Parzen kernel (5) 

Turkey-Hanning kernel functions  

Testing for the presence of heteroscedasticity, serial 

correlation and spatial dependence in the simulated data 

Breusch-Pagan test was used to test the presence of 

heteroscedasticity, Serial correlation was tested for using  

Durbin-Watson test statistic to test while Spatial-

autocorrelations among the model residuals were assessed  

using both global and local Moran coefficients (Anselin 

1988). 

Criteria for assessing the performance of the Estimators 

The Absolute Bias, the Variance and Root mean square error 

were used to assess the performance of the Estimators 

IV. RESULTS AND DISCUSSION 

Table 1: shows results of the test statistic to detect the 
presence of heteroscedasticity, serial correlation and spatial 
dependence in the simulated data  
 
 Heteroscedastic

ity 
Serial 
correlati
on 

Spatial 
dependen
ce 

        (p-value)        (p-
value) 

       (p-
value) 

N ,T        BPErr           
DW 

      
Moran 1 

N=50 T=20 8.0169 
(0.01826) 

0.95816  
(2.2e-16) 

8.6731 
(0.000969
) 

N=150 T=40 5.01816 
((0.00532) 

0.53741 
(1.4e-3) 

7.53744 
(0.00069) 

N=50, 
T=20,K=10 

7.35303 
(0.00619 

0.83338  
(2.2e-16) 

12.47383 
(0.03745) 

N=50,T=20,K=
50 

4.53042 
(0.04054) 

0.58733  
(0.0054) 

9.53901 
(0.00347) 

N=150,T=40,K
=10 

8.33821 
(0.00622 

0.39392 
(0.0045 

4.68992 
(0.000969
) 

N=150,T=40,K
=50 

3.22453 
(0.02453) 

0.13724 
(0.0463) 

7.16829 
(0.0069) 

N=10, T=40 7.35782 0.57208 20.6383 

(0.0453) (0.056) (000 
.0969) 

N=10, T=40, 
k=10 

5.24261 
(0.07i74) 

0.22445  
(0.0055 

5.72020 
(0.000969
) 

N=50, T=20, 
k=50 
 

6.53292 
(0.00335 

0.22439 
(0.006 

11.6380. 
000969) 

 
 
Table 1 shows the results of various tests conducted show a 
BP value of 8.0169 and a p – value of 0.01816. Since this 
0.01816 < 0.05, this confirmed the presence of 
heteroscedasticity in the simulated data.  The DW value 
reported was 0.95816 and since this value is between 0 < d < 
4, it shows the presence of serial correlation in the data. 
Finally, the p- values for the spatial dependence was 0.001107 
and this was far below the threshold value of < 0.05, thus 
indicating the presence of spatial dependence in the data. The 
results of the tests statistics therefore confirmed the presence 
of heteroscedasticity, serial correlation and spatial dependence 
in the panel data sets. 

Tables 2 -10 shows the results of the performances of the 
different estimators at the different levels of 
heteroscedasticity, serial correlation and spatial dependence, 
and across the different spatial weight matrices and cross-
sectional and time dimensions using the simulated data. The 
estimators were ranked using the ranks 1, 2, 3, 4 and 5 with 
rank 1 assigned to the best estimator. A rank of 2 is assigned 
to the second best estimator and so on. . To determine the rank 
of the best estimator with highest occurrence of lowest 
value(s) of Absolute bias, Var, and RMSE were ranked in 
ascending order as best estimators. 
Table 2: Preferred Estimator at different levels of 
heterogeneeity, serial correlation and spatial dependence, 
when N = 50, T = 20 (Distance Bands Weight Matrix) 
   Serial Correlation 
SD HT  0.9 0.5 0 -0.5 -0.9 

 Low  BAT TUK TRU TUK TUK 
0.9 Mild  TUK BAT TRU BAT TUK 

 Severe  TUK TUK PAZ BAT TUK 
 Low  TUK TUK TRU TUK TUK 
0.5 Mild  TUK TUK TRU TUK TUK 

 Severe  BAT BAT PAZ BAT TUK 
 Low  TRU TRU TRU PSE TRU 
0 Mild  PSE PSE TRU PSE TRU 
 Severe  PSE PSE TRU PSE PSE 
 Low  TUK TUK TRU TUK TUK 

-0.5 Mild  TUK TUK TRU BAT TUK 
 Severe  BAT BAT PSE TUK BAT 
 Low  TUK TUK TRU BAT TUK 

-0.9 Mild  TUK TUK PSE TUK TUK 
 Severe  BAT TUK TRU TUK BAT 
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Panel Corrected Standard Error (PSE),Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions 
Table 2 shows the performance of the different estimators for 
the different levels of heteroscedasticity, serial correlation and 
spatial dependence for (50, 20) cross-sectional and time 
dimensions and the Distance Band Weight (DBW) matrix 
specifications. The results shows that the Bartlett kernel and 
The Turkey-Hannings kernel performed better than other 
estimators across the different combinations of 
heteroscedasticity, serial correlation and spatial dependence 
and irrespective the signs .However, the Turkey-Hannings 
kernel dominated the Bartlett kernel at more of the 
combinations of heteroscedasticity, serial correlation and 
spatial dependence.  
Table 3: Preferred Estimator at different levels of 
heterogeneity, serial correlation and spatial dependence, 
when N = 150, T = 40 (Distance Bands Weight Matrix) 
 
   Serial Correlation 
SD HT  0.9 0.5 0 -0.5 -0.9 

 Low  BAT TUK TRU TUK BAT 
0.9 Mild  TUK BAT PSE BAT BAT 

 Severe  BAT BAT PAZ TUK BAT 
 Low  TUK BAT TRU TUK TUK 
0.5 Mild  BAT TUK TRU TUK BAT 

 Severe  BAT BAT PAZ BAT BAT 
 Low  PSE PSE TRU PSE PSE 
0 Mild  PSE TRU TRU PSE TRU 
 Severe  PSE PSE PSE PSE PAZ 
 Low  TUK TUK PSE TUK BAT 

-0.5 Mild  BAT TUK TRU TUK TUK 
 Severe  BAT BAT PSE TUK BAT 
 Low  BAT BAT PSE TUK BAT 

-0.9 Mild  BAT BAT PSE TUK BAT 
 Severe  BAT TUK TUK TUK BAT 

 
Panel Corrected Standard Error (PSE), Truncated 
(TRU)Bartlett (BAT), Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions 
For the different levels of heteroscedasticity, serial correlation 
and spatial dependence across for (150, 40) cross-sectional 
and time dimensions and the Distance Band Weight (DBW) 
matrix specifications (Table .3)  The Bartlett kernel and the 
Turkey-Hannings kernel were the dominant estimators. 
However, for positive spatial dependence and positive serial 
correlation and also for negative spatial dependence and 
positive serial correlation, the Bartlett kernel dominated the 
Turkey-Hanning kernel in more of the combinations of 
heteroscedasticity, serial correlation and spatial dependence.  
Table 4: Preferred Estimator at different levels of spatial 
dependence, spatial heterogeneity and serial correlation N 
= 50, T = 20 and k = 10 (10-nearest Neighbour Spatial 
Weight Matrix) 
   Serial Correlation 

SD Hetero  0.9 0.5 0 -0.5 -0.9 
 Low  TUK BAT PSE TUK BAT 
0.9 Mild  TUK TUK TRU TUK TUK 

 Severe  TUK TUK PAZ TUK TUK 
 Low  BAT TUK TRU TUK BAT 
0.5 Mild  TUK BAT TRU TUK TUK 

 Severe  TUK TUK PAZ BAT TUK 
 Low  PSE TRU TRU PSE PSE 
0 Mild  TRU TRU TRU PSE PAZ 
 Severe  PSE TRU PSE TRU TRU 
 Low  TUK BAT PSE TUK TUK 

-0.5 Mild  BAT BAT TRU TUK BAT 
 Severe  TUK TUK PSE TUK TUK 
 Low  TUK TUK PSE TUK BAT 

-0.9 Mild  TUK TUK PSE TUK TUK 
 Severe  TUK BAT TUK TUK TUK 

Panel Corrected Standard Error (PSE),Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK)  Kernel functions 
From (Table 4), the results shows that for different 
combinations of heteroscedasticity, serial correlation and 
spatial dependence and across the (50, 20) cross-sectional and 
time dimensions with K =10 spatial weight matrix 
specifications, the Bartlett kernel and the Turkey-Hannings 
kernel were the dominant estimators. The Turkey-Hannings 
kernel dominated the Bartlett kernel for more of this 
combination of serial correlation and spatial dependence in 
respective of their signs and degree of heteroscedasticity  
Table 5: Preferred Estimator at different levels of 
heterogeneity, serial correlation and spatial dependence, 
spatial N = 150, T = 40 and k = 10 (10-nearest Neighbour 
Spatial Weight Matrix) 
   Serial Correlation 
SD Hetero  0.9 0.5 0 -0.5 -0.9 

 Low  BAT BAT PSE BAT BAT 
0.9 Mild  TUK BAT TRU BAT BAT 

 Severe  BAT BAT PAZ TUK BAT 
 Low  TUK BAT TRU TUK TUK 
0.5 Mild  BAT TUK TRU TUK BAT 

 Severe  BAT BAT PAZ BAT BAT 
 Low  TRU PSE PAZ TRU PSE 
0 Mild  PAZ PSE TRU TRU PAZ 
 Severe  PSE PSE TRU TRU TRU 
 Low  BAT TUK TRU BAT BAT 

-0.5 Mild  BAT TUK TRU TUK TUK 
 Severe  BAT BAT PSE BAT BAT 
 Low  BAT BAT PSE BAT BAT 

-0.9 Mild  BAT BAT PSE BAT BAT 
 Severe  BAT BAT TUK BAT TUK 

  
Panel Corrected Standard Error (PSE) Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions 
Table (5) shows of performances of the different estimators 
for different combinations of heteroscedasticity, serial 
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correlation and spatial dependence for the (150, 40) cross-
sectional and time dimension and for K=10 spatial weight 
matrix specifications. The results showed that the Bartlett 
kernel and the Turkey-Hannings kernel were the dominant 
estimators, but the Bartlett kernel dominated the Turkey-
Hannings kernel for more of the combinations of serial 
correlation and spatial dependence in respective of the degree 
of heteroscedasticity and signs.  
Table 6: Preferred Estimator at different levels of spatial 
dependence, spatial heterogeneity and serial correlation N 
= 50, T = 20 and k = 50 (50-nearest Neighbour Spatial 
Weight Matrix) 
   Serial Correlation 
SD Hetero  0.9 0.5 0 -0.5 -0.9 

 Low  BAT BAT PSE BAR  BAT 
0.9 Mild  TUK BAT TRU BAR BAT 

 Severe  BAT BAT PAZ TUK BAT 
 Low  TUK BAT TRU TUK TUK 
0.5 Mild  BAT TUK TRU TUK BAT 

 Severe  BAT BAT PAZ BAR BAT 
 Low  TRU  PSE PAZ TRU PSE 
0 Mild  PAZ PSE TRU TRU PAZ 
 Severe  PSE PSE TRU TRU TRU 
 Low  BAT TUK TRU BAT BAT 

-0.5 Mild  BAT TUK TRU TUK TUK 
 Severe  BAT BAT PSE BAT BAT 
 Low  BAT BAT PSE BAT BAT 

-0.9 Mild  BAT BAT PSE BAT BAT 
 Severe  BAT BAT TUK BAT TUK 

 
Panel Corrected Standard Error (PSE) Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions  
The results on (Table 6) shows that for the different 
combinations of heteroscedasticity, serial correlation and 
spatial dependence and for the (50, 20) cross-sectional and 
time dimensions and K =50 spatial weight matrix 
specifications, the Bartlett kernel and the Turkey-Hannings 
kernel were the dominant estimators irrespective of the signs 
combinations However, the Bartlett kernel performed better 
than the Turkey-Hanning kernel for more of the combinations 
of spatial dependence and serial correlation irrespective of the 
degree of heteroscedasticity and combinations of the signs.  
Table 7: Preferred Estimator at different levels of 
heterogeneity, serial correlation and spatial dependence, 
spatial N = 150, T = 40 and k = 50 (50-nearest Neighbour 
Spatial Weight Matrix) 
   Serial Correlation 
SD Hetero  0.9 0.5 0 -0.5 -0.9 

 Low  BAT BAT PSE BAT BAT 
0.9 Mild  TUK BAT TRU BAT BAT 

 Severe  BAT BAT PAZ TUK BAT 
 Low  TUK BAT TRU TUK TUK 
0.5 Mild  BAT TUK TRU TUK BAT 

 Severe  BAT BAT PAZ BAT BAT 

 Low  TRU PSE PAZ TRU PSE 
0 Mild  PAZ PSE TRU TRU PAZ 
 Severe  PSE PSE TRU TRU TRU 
 Low  BAT TUK TRU BAT BAT 

-0.5 Mild  BAT TUK TRU TUK TUK 
 Severe  BAT BAT PSE BAT BAT 
 Low  BAT BAT PSE BAT BAT 

-0.9 Mild  BAT BAT PSE BAT BAT 
  Severe  BAT BAT TUK BAT TUK 

   
Panel Corrected Standard Error (PSE) Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions  
For the different combinations of heteroscedasticity, serial 
correlation and spatial dependence and the (150, 40) cross-
sectional and time dimension and K = 50 spatial weight 
matrix specifications (Table 7). The results revealed that  the 
Bartlett kernel and the Turkey-Hannings kernel were the 
dominated other estimators irrespective of the signs and 
combinations, However, the Bartlett kernel performed better 
than the Turkey-Hanning kernel for more of the combinations 
of serial correlation and spatial dependence irrespective of the 
degree of heteroscedasticity.  

Table 8: Preferred Estimator at different levels of 
heterogeneity, serial correlation and spatial dependence, 
when N =10, T = 40 (Distance Bands Weight Matrix)  
   Serial Correlation 
SD HT  0.9 0.5 0 -0.5 -0.9 

 Low  BAT PAZ TRU BAT BAT 
0.9 Mild  BAT PAZ TRU BAT BAT 

 Severe  BAT BAT TRU BAT PAZ 
 Low  PAZ BAT TRU PAZ PAZ 
0.5 Mild  BAT BAT TRU PAZ PAZ 

 Severe  BAT PAZ TRU BAT PAZ 
 Low  TRU TRU TRU TUK TRU 
0 Mild  TRU TRU TRU TRU TRU 
 Severe  TRU TRU TRU TRU TUK 
 Low  PAZ BAT TRU PAZ PAZ 

-0.5 Mild  PAZ BAT TRU PAZ PAZ 
 Severe  BAT PAZ PSE BAT PAZ 
 Low  BAT PAZ PSE BAT BAT 

-0.9 Mild  BAT BAT TRU BAT BAT 
 Severe  BAT BAT TRU BAT BAT 

 
Panel Corrected Standard Error (PSE) Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions  
Table 8) shows the results of the performance of the different 
estimators for the different combinations of 
heteroscedasticity, serial correlation and spatial dependence 
for the (10, 40) cross-sectional and time dimension with 
Distance weight matrix specifications. From the results , the 
Bartlett kernel and the Parzen kernel were the dominant 
estimators for more combinations of heteroscedasticity, serial 
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correlation and spatial dependence and also the for the 
different sigh combinations .However, the Bartlett kernel 
dominated the Parzen kernel in more of the combinations of 
spatial dependence and serial correlations irrespective of the 
degree of heteroscedasticity and signs combinations.  
Table 9: Preferred Estimator at different levels of 
heterogeneity, serial correlation and spatial dependence, 
spatial when N = 10 and T = 40, k = 10 (10-Nearest 
Neighbourhood Matrix) 
   Serial Correlation 
SD HT  0.9 0.5 0 -0.5 -0.9 

 Low  PAZ BAT PSE BAT PAZ 
0.9 Mild  BAT PAZ TRU PAZ BAT 

 Severe  BAT PAZ TRU BAT PAZ 
 Low  BAT PAZ TRU BAT BAT 
0.5 Mild  PAZ BAT PSE BAT PAZ 

 Severe  PAZ PAZ PSE PAZ PAZ 
 Low  TRU TRU PSE TRU TRU 
0 Mild  TRU PSE TRU TRU PSE 
 Severe  TRU PSE TRU TRU TRU 

 Low  PAZ PAZ TRU PAZ PAZ 
-0.5 Mild  PAZ BAT TRU PAZ BAT 

 Severe  PAZ PAZ PSE PAZ PAZ 
 Low  PAZ BAT PSE PAZ BAT 

-0.9 Mild  PAZ PAZ TRU PAZ PAZ 
 Severe  PAZ PAZ TRU PAZ BAT 

 
Panel Corrected Standard Error (PSE) Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions  
From (Table 9), the results revealed that the Bartlett kernel 
and the Parzen kernel were the dominant estimators for the 
different combinations of heteroscedasticity, serial correlation 
and spatial dependence for the (10, 40) cross-sectional and 
time dimensions with K =10 spatial weight matrix 
specifications irrespective of the sign combinations. But the 
Parzen kernel performed better than the Bartlett kernel for 
more of the combinations of spatial dependence and serial 
correlation irrespective of the degree of heteroscedasticity and 
sigh combinations.  
Table 10: Preferred Estimator at different levels of 
heterogeneity serial correlation and spatial dependence, 
when N = 10 and T = 40, k = 50 (50-Nearest 
Neighbourhood Matrix 
   Serial Correlation 
SD Hetero  0.9 0.5 0 -0.5 -0.9 

 Low  PAZ PAZ PSE PAZ PAZ 
0.9 Mild  PAZ PAZ TRU BAT BAT 

 Severe  BAT PAZ TRU PAZ PAZ 
 Low  PAZ BAT TRU PAZ PAZ 
0.5 Mild  BAT PAZ TRU BAT BAT 

 Severe  PAZ BAT TRU BAT BAT 
 Low  TRU PAZ TRU PSE PSE 
0 Mild  PSE PAZ TRU PSE TUK 
 Severe  PSE TRU PSE TRU TRU 

 Low  PAZ PAZ PSE PAZ BAT 
-0.5 Mild  PAZ PAZ TRU PAZ PAZ 

 Severe  BAT PAZ PSE BAT BAT 
 Low  PAZ BAT PSE PAZ PAZ 

-0.9 Mild  PAZ BAT PSE PAZ PAZ 
 Severe  PAZ PAZ PAZ BAT BAT 

  
Panel Corrected Standard Error (PSE) Truncated 
(TRU)Bartlett (BAT),Parzen (PAZ) Turkey-Hanning 
(TUK) Kernel functions  
The performance of the different estimators for the different 
combinations of heteroscedasticity, serial correlation and 
spatial dependence for the (10, 40) cross-sectional and time 
dimensions with K =50 spatial weight matrix specifications is 
presented in (Table10).  From the results, the Bartlett kernel 
and the Parzen kernel were adjudged better than the other 
estimators irrespective of the signs combinations .But, the 
Parzen kernel performed better than the Bartlett kernel for 
more of the combinations of spatial dependence and serial 
correlation irrespective of the degree of heteroscedasticity and 
the sigh combinations.  
 

V. CONCLUSION AND RECOMMENDATIONS 
	

For panel data model with  heteroscedasticity, serial 
correlation and spatial dependence, in respective of the signs 
and magnitude of the error combinations, cross-sectional and 
time dimensions, and specifications of the spatial weight 
matrix,  the Turkey-Hannings kernel, the Bartlett kernel and 
the Parzen kernel were the dominant estimators  The Turkey-
Hanning kernel and the Bartlett kernel were observed to have 
performed better for short panel (N > T) but the Turkey-
Hannings kernel (TUK) was more preferred for small sample 
sizes (50, 20), with narrow spatial weight matrix 
specifications (Distance band weight, K =10) while the 
Bartlett (BART) kernel on the other hand performed better 
generally for large sample sizes ((150, 40) and wider spatial 
weight matrix specifications (K = 50). The Bartlett kernel and 
the Parzen kernel were the dominant estimators for long panel 
data (N < T). While the Bartlett (BART) kernel performed 
better for narrower spatial weight matrix specifications 
(Distance band weight). .The Parzen kernel estimator on the 
other hand was observed to have performed better with wider 
spatial weight matrix specifications (K = 50). Generally, the 
truncated kernel and the PCSE were dominant were either 
serial correlation was absence  or where spatial dependence 
was absence  or where both serial correlation and spatial 
dependence ware absence . However, the performance of the 
different estimators were influenced by the different panel 
type, different cross-sectional and time dimensions and 
different specifications of the spatial weight matrix  
The study therefore recommends that either the Turkey-
Hannings kernel, the Bartlett kernel or  the Parzen kernel 
could be used for panel data model with data with 



International Journal of Engineering and Applied Sciences (IJEAS) 
 ISSN: 2394-3661, Volume-11, Issue-5, May 2024  

	 																																	www.ijeas.org 17 

heteroscedasticity, serial correlation and spatial dependence 
but that considerations should be given to the panel type, 
cross-sectional and time dimensions as well as under different 
the specifications of the spatial weight in the choice of any 
estimator  
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