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Abstract— This study explores the optimization of 

maintenance strategies using simulation modeling in Plant 
Simulation. It focuses on enhancing system reliability by 
examining key parameters such as availability, Mean Time To 
Repair, and Mean Time Between Failures, modeled through 
Negative Exponential and Weibull distributions. The 
interrelation of these parameters is leveraged to develop a 
dynamic maintenance model that addresses the limitations of 
traditional hazard rates. The study introduces a sawtooth 
hazard rate model for more realistic failure dynamics and 
evaluates the efficacy of maintenance strategies through 
comprehensive simulation experiments. The results indicate 
that incorporating maintenance significantly improves system 
reliability and operational efficiency, with detailed analysis 
provided through statistical tests and comparative assessments. 
 

Index Terms— Event based simulation, Maintenance 
Strategies, System Reliability, Weibull and NegExp Functions 
 

I. INTRODUCTION 

A.   Relevant Literature 
The ScienceDirect database was used for the literature 

search. This limitation was primarily due to linguistic 
reasons, to ensure a focus on English-language texts.  

Based on the keywords Maintenance and DES, there is a 
continuously rising interest in the field. Around the year 
2000, there were only a few publications, but the number 
steadily and strongly increased to approximately 2400. 
When reducing the keywords to Reliability Centered 
Maintenance and DES, the same trend is visible, although 
the total number of papers reduces to 8554. Further filtering 
with the keyword Hazard Rate brings the number of papers 
down to 437. If we further reduce the dataset by only 
considering research articles, we find 92 articles, of which 
 

 Marc Hermans, Institute of Logistics, University of Miskolc, Hungary.  
  
Dr. Fegyverneki Sándor, Institute of Mathemathics, University of 

Miskolc, Hungary.   

87 are in the field of Engineering and 14 in Mathematics. 
Unfortunately, only 10 of these articles were directly 
accessible.  

B. Key Takeaways 
• Methodologies: Articles employ various 

methodologies ranging from Monte Carlo 
simulations [1] and Markov models [2] to 
machine learning and statistical analysis [3]. 

• Applications: Applications vary significantly, 
including aerospace [1], industrial machinery [4, 
5], bridge infrastructure [6], offshore wind farms 
[7], and wave energy systems [8]. 

• Focus: The focus ranges from specific component 
failure assessments [9] and maintenance 
optimization to broader topics like energy 
management and system resilience [10]. 

 
Each article addresses distinct aspects of reliability, 
maintenance, and optimization, tailored to specific 
applications and employing unique methodological 
approaches. 
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Figure 1: Distribution of articles over the years 

Figure 2: Categorization of articles by type 
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C. Aim and Motivation 
• Methodologies The article employs simulation 

modeling in Plant Simulation to optimize 
maintenance strategies. It uses Weibull and 
Negative Exponential (NegExp) distributions to 
model Mean Time To Repair (MTTR) and Mean 
Time Between Failures (MTBF) [11]. It 
introduces a sawtooth hazard rate model for 
more realistic failure dynamics. 

• Applications The focus is on enhancing system 
reliability and operational efficiency within a 
manufacturing station setup [12]. It evaluates the 
impact of different maintenance strategies under 
varied statistical distributions for failure 
intervals. 

The article emphasizes dynamic maintenance modeling, 
realistic failure dynamics, and optimizing maintenance 
schedules. It addresses the limitations of traditional hazard 
rates and integrates a more nuanced approach to simulation 
modeling, considering human factors and operational 
conditions. 

D. General Approach and Specific Ideas 
1) General Approach 

• The article provides a comprehensive framework 
for optimizing maintenance strategies using 
advanced simulation models [13]. 

• It incorporates statistical analyses and compares 
different distributions (NegExp vs. Weibull) to 
validate the effectiveness of maintenance 
strategies. 

• It includes detailed experimental design and 
parameters, focusing on practical applications 
and real-world scenarios [13]. 

2) Specific Ideas 
• The introduction of a sawtooth hazard rate model 

to represent dynamic failure rates. 
• Detailed analysis and optimization of Weibull 

distribution parameters to align with NegExp 
rate parameters. 

• A focus on the impact of preventive maintenance 
checks and system availability on performance 
and reliability. 

In summary, this article thoroughly explores the specifics 
of simulation modeling and the optimization of maintenance 
strategies, offering a detailed and practical approach to 
enhancing system reliability and efficiency. This focus is 
more specialized compared to the broader range of 
reliability and maintenance topics discussed in the 
aforementioned articles. 

E. Enhancing System Reliability through 
Simulation-Based Maintenance Strategies 
In Plant Simulation, maintenance and failure dynamics 

are crucial elements that directly impact the overall 
effectiveness of operational processes. Key parameters in 
defining these dynamics include: 

• Availability (Av): This reflects the proportion of 
time a system is in a functioning condition. 

• Mean Time To Repair (MTTR): This measures 
the average time required to repair a machine or 

system after a failure. 
• Mean Time Between Failures (MTBF): This is the 

predicted elapsed time between inherent failures 
of a system during operation. 

These parameters are interrelated through the formula 
                       (1) 

which provides a basis for simulating the operational 
reliability of systems [15]. In Plant Simulation, the MTBF is 
typically modeled using a Negative Exponential (NegExp) 
distribution, assuming a random failure process with a 
constant hazard rate. 

F. Connection Between Negative Exponential and 
Poisson Distributions 
The connection between the Negative Exponential 

(NegExp) distribution and the Poisson distribution, 
particularly within the context of queuing theory, is a 
fundamental concept in the study of stochastic processes. 
These distributions are used to model and analyze systems 
involving random events over time [14]. 

1) Understanding the Negative Exponential 
Distribution 

The Negative Exponential distribution is utilized to model 
the time between events in a continuous setting. It is defined 
by the rate parameter \lambda, representing the rate of 
occurrences (events per unit time). The probability density 
function (PDF) of the NegExp distribution is given by: 

                       (2) 
where . This distribution is widely used to 

describe the time until the next event occurs in systems 
where events happen continuously and independently at a 
constant average rate [16]. 

2) Understanding the Poisson Distribution 
The Poisson distribution models the number of discrete 

events in a fixed interval of time or space, assuming that 
these events occur with a constant mean rate and 
independently of the time since the last event. The 
probability mass function (PMF) of the Poisson distribution 
for a number of events k in a given time period t is: 

                       (3) 
where  is the rate of event occurrences, t is the time 

interval, and k is the number of events. 
3) Connection Between NegExp and Poisson 
Distributions 

The linkage between these distributions is highlighted by 
their shared parameters and foundational assumptions [17]: 

• Rate Parameter : In both distributions, \lambda 
denotes the rate at which events occur. In the 
NegExp distribution, it describes the rate of time 
until the next event, while in the Poisson 
distribution, it quantifies the rate of occurrence 
of a number of events within a fixed period. 

• Time Between Events: The NegExp distribution 
models the time between consecutive events in a 
Poisson process, demonstrating that if you have 
a Poisson process with rate , the time between 
each pair of consecutive events follows a 
NegExp distribution with the same . 

• Modeling in Queuing Theory: These distributions 
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are commonly used together to model systems 
such as customer service centers, network traffic, 
or manufacturing processes. For example, the 
Poisson distribution might model the arrival of 
customers at a service point, while the NegExp 
distribution could model the service time 
required by each customer. 

4) Focus and Application 
• NegExp: Focuses on the time between events. 
• Poisson: Focuses on the count of events within a 

specified time period. 
The two are mathematically linked—specifically, if events 
follow a Poisson process (which they do if events occur 
randomly and independently at a constant average rate), then 
the time between events follows a Negative Exponential 
distribution. This intrinsic relationship allows for a 
comprehensive analysis and modeling of dynamic systems 
where understanding both the count of events and the timing 
between them is crucial. 

II. CHALLENGES IN MODELING REALISTIC MAINTENANCE 
IMPACTS USING TRADITIONAL HAZARD RATES 

The use of the Negative Exponential (NegExp) 
distribution in modeling Mean Time Between Failures 
(MTBF) is both a standard practice and a potential 
limitation. The constant hazard rate implied by this 
distribution suggests that failures are memoryless, meaning 
the probability of failure does not change over time or with 
the condition of the equipment [14]. This modeling 
approach does not account for: 

• Wear and Tear: Equipment degradation over time 
which should realistically alter the failure rates. 

• Maintenance Impact: The actual effects of 
maintenance activities on extending the life or 
restoring the condition of the equipment. 

Consequently, maintenance strategies modeled in this 
framework might not accurately reflect their real-world 
impact on system reliability and efficiency. The primary 
challenge lies in integrating a more realistic approach to 
simulate how maintenance affects system performance and 
failure rates, especially in the context of equipment 
lifecycle. 

A. Description of the Bathtub Curve 
The bathtub curve is a fundamental concept in reliability 

engineering, depicting the failure rate of a product over its 
lifecycle [12, 14]. It is called the bathtub curve due to its 
shape, which resembles a cross-section of a bathtub. The 
bathtub curve is comprised of three distinct phases, each 
representing different failure characteristics over the 
lifecycle of a component or system: 

• Break-in Phase 
o Description: This phase occurs at the 

beginning of the product’s life. The 
failure rate is high but decreases over 
time as defective products fail and are 
removed from service. 

o Causes: Failures are often due to 
manufacturing defects, material flaws, 
or design errors. 

o Statistical Model: Failure rates typically 

follow a decreasing Weibull 
distribution, where the shape parameter 

. 
• Midlife Cycle Period 

o Description: This phase follows the infant 
mortality period and features a low and 
relatively constant failure rate, which 
makes it the most predictable and stable 
period. 

o Causes: Failures are generally random and 
due to unforeseen operational or 
environmental conditions. 

o Statistical Model: The failure rate is often 
modeled using an exponential 
distribution, indicative of a constant 
failure rate where  is typically low. 

• Wear-Out Phase 
o Description: Occurring towards the end of 

the product’s life, this phase shows an 
increasing failure rate due to the aging 
and wear of components. 

o Causes: Physical deterioration or 
obsolescence of components are typical 
reasons for the increase in failure rates. 

o Statistical Model: The increasing failure 
rate can be modeled by a Weibull 
distribution with a shape parameter 

, reflecting the wear-out 
characteristics. 

The bathtub curve is extensively used in reliability 
engineering to design maintenance schedules, estimate 
product lifetimes, and make decisions about warranties and 
replacements. The bathtub curve provides a valuable tool for 
understanding and managing the reliability and maintenance 
requirements of various products throughout their lifecycle. 
By identifying and analyzing each phase, reliability 
engineers can implement more effective reliability and 
maintenance strategies, tailored to the specific needs of their 
products. 

B. Midlife Cycle Modeling Restrictions 
The effectiveness of the midlife cycle modeling in 

simulation environments is subject to several influencing 
factors beyond mere time metrics. These include the training 
and resources available to operational personnel and the 
material characteristics of the equipment alongside its 
operational load. Specific considerations include: 

• Break-in Period Considerations: Contrary to 
traditional views that align the break-in period 

Figure 4: Bathtub curve [Source: Own 
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solely with time, it is argued that this phase is 
more significantly impacted by how well the 
personnel are trained and equipped. Adequate 
training and access to necessary tools and 
materials can substantially minimize the duration 
of this initial phase. Thus, a focus on enhancing 
operational training and resource allocation 
during the break-in period is crucial. 

• Influence of Operational Conditions on Wear-Out: 
The latter stages of the equipment’s lifecycle, 
often depicted as the wear-out phase in the 
bathtub curve, are heavily influenced not only by 
the inherent material properties but also by the 
operational practices employed. While excessive 
load may not alter the fundamental 
characteristics of this phase, it undoubtedly 
shortens the interval between the end of the 
break-in period and the onset of the wear-out 
phase. This underscores the importance of 
optimal machinery usage and the implementation 
of load management strategies to extend the 
effective life of the equipment. 

These considerations necessitate a more nuanced 
approach to simulation modeling, where both human factors 
and operational tactics are integrated into the lifecycle 
analysis of machinery. By acknowledging and adjusting for 
these factors, simulations can more accurately reflect 
real-world conditions and offer more practical guidelines for 
maintenance and operation. 

C. Incorporating Realistic Failure Dynamics into Plant 
Simulation 
This paper aims to advance the modeling of maintenance 

in Plant Simulation by addressing the limitations of the 
NegExp distribution for MTBF in reflecting realistic 
maintenance outcomes. The focus will be on the following: 

• Middle Life Cycle Modeling: Concentrating on 
the middle portion of the bathtub curve, which 
represents a period of constant failure rate 
typically observed after the initial break-in 
period but before the wear-out phase begins. 

• Dynamic Failure Rate Adjustment: Developing a 
model that allows for adjustments to failure rates 
based on maintenance activities, moving beyond 
the assumption of a constant hazard rate to 
incorporate factors like improved condition and 
extended life due to preventive and corrective 
maintenance. 

The goal is to create a more dynamic simulation model that 
more accurately reflects the experienced failure rates 
post-maintenance, providing a tool for more effective 
planning and execution of maintenance strategies. 

III. CONCEPTUAL MODEL DEVELOPMENT 

A. Sawtooth Hazard Rate Model 
Conventionally, the hazard rate in the middle stage of the 

bathtub curve is depicted as a constant line, indicating a 
steady failure rate until the commencement of the wear-out 
phase. In contrast, our model introduces a dynamic 
representation, visualizing this period as a sequence of 

increasing hazard rates. These increments are periodically 
reset by maintenance actions, which lower the hazard rate to 
a new baseline. Each maintenance event essentially 
rejuvenates the system, mirroring the sawtooth pattern 
commonly seen in inventory management for reorder points 
and restocking cycles. 

In our enhanced approach, the hazard rate ( ) starts at 
zero following a maintenance action and progressively 
climbs until the subsequent maintenance activity. The rate of 
increase may be linear or adopt a more complex form 
depending on the specific attributes of the equipment and 
the operating conditions. The flexibility of the Weibull 
distribution, with shape ( ) and scale ( ) factors, provides a 
robust framework for this model. Furthermore, the ability of 
the Weibull distribution to approximate the Negative 
Exponential distribution’s behavior is leveraged. 
In subsequent sections, we capitalize on the Weibull 
distribution’s versatility. By setting the shape factor to 2, we 
construct a model that exhibits a linear increase in hazard 
rate. This feature renders the Weibull distribution 
particularly suitable for modeling a range of life behaviors 
influenced by the shape factor ( ): 

B. Detailed Analysis of Weibull and NegExp Distributions 
The Weibull distribution is particularly noted for its 

flexibility in modeling various types of failure data, thanks 
to its adjustable parameters [18]. The general probability 
density function (PDF) of the Weibull distribution is 
described by the equation: 

                       (4) 

In this formula,  represents the location parameter,  the 
shape factor,  the scale factor, and t is the time variable. 
During the interval between 0 and  the system is free of 
failure. For reasons of simplicity the location parameter is 
set to zero and we can rewrite the probability density 
function to: 

                       (5) 

The shape factor, , influences the skewness of the 
distribution, allowing it to model a variety of life behaviors. 
For instance, a  less than 1 indicates a decreasing failure 
rate over time, typical in early product life (infant mortality 
phase), while a  greater than 1 suggests an increasing 
failure rate, characteristic of wear-out periods. 

The hazard function , crucial for 

applications in reliability engineering, is derived directly 
from the PDF and is given by: 

                       (6) 

This function indicates the instantaneous rate of failure at 
any given time t, assuming the component has survived up 
to that time. It is particularly useful in predicting the times 
of maintenance and replacement based on expected life 
distributions. 

1) Comparison with NegExp Distribution 
The Negative Exponential (NegExp) distribution is 

another critical tool in reliability engineering, commonly 
used to model the time between failures in a completely 
random process [17]. Its simplicity lies in a constant hazard 
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rate, which is not dependent on time, making it ideally 
suited for electronic components and systems in their useful 
life phase. The PDF of the NegExp distribution is given by: 

                       (7) 
where  is the rate parameter, indicating the number of 

failures per unit time and is constant over time. The NegExp 
distribution assumes that failures are memoryless, meaning 
that the probability of failure is the same regardless of how 
long the component has been in service. The hazard 
function: 

                       (8) 
2) Differentiating the Hazard Function with Respect to 
Time: 

The derivative of the hazard function for the Negative 
Exponential (NegExp) distribution, given by , with 
respect to t, is, as expected, zero for any t. This reflects the 
constant hazard rate characteristic of the NegExp 
distribution. 

For the Weibull distribution, the hazard function is 

defined as . Simplifying this expression, we 

obtain . Taking the derivative of  with 

respect to t yields: 
                       (9) 

By setting , the derivative simplifies to: 
                       (10) 

This result indicates that the rate of change of the hazard 
function is constant, showing a linear behavior when  is set 
to 2. This simplification highlights the unique properties of 
the Weibull distribution when modeling time-dependent 
failure rates. 

When the shape factor  is set to 2, the Weibull hazard 
function simplifies significantly. The formula is then 
reduced to: 

                       (11) 

This linear relationship between the hazard rate and time 
provides a clear basis for the sawtooth model 
implementation. 
To construct the sawtooth pattern, each segment of the 
model corresponds to the interval between two consecutive 
maintenance activities. By substituting t with the planned 
maintenance interval and setting \eta such that the hazard 
rate reaches a predefined maximum before maintenance, we 
can effectively model the reset of the hazard rate at each 
maintenance event. This approach ensures that the hazard 
rate is periodically reset, corresponding to the maintenance 
frequency, thereby creating a repeating sawtooth pattern 
which reflects periodic risk reduction due to maintenance 
activities. 

C. Optimization of Weibull Distribution Parameters 
1) Aligning Weibull Hazard Rate with NegExp Rate 
Parameter 

The concept here is to synchronize the hazard rate of the 
Weibull distribution with the constant hazard rate  of the 
NegExp distribution at a specific point in time. This point is 
chosen based on when the Weibull hazard rate equals the 
NegExp rate, ensuring that maintenance interventions are 
optimized to prevent an increasing risk of failure. 

2) Mathematical Derivation and Selection of \eta 

a) NegExp Parameters 

• Mean Time Between Failures (MTBF) for 
NegExp is . 

• Hazard Rate ( ) for NegExp is . 

b) Setting Weibull Hazard Equal to NegExp Hazard: 

• Weibull hazard rate at time  is given by 

                       (12) 

• For , simplify this to 

                       (13) 

• Equating Weibull to NegExp at : 

                       (14) 

• Solving for  yields 

                       (15) 

3) Implementing the Selection 
By setting  to , you’re configuring the Weibull 

distribution to reset (i.e., schedule maintenance) once the 
hazard rate matches the constant rate of the NegExp 
distribution at the average failure time . This setting 
leverages the mean time to failure from the NegExp model 
to inform the Weibull model, creating a coherent 
maintenance strategy that activates just as the system’s risk 
begins to exceed the average expected under constant hazard 
conditions. 

4) Practical Application and Considerations 
• Integration with Maintenance Policies: This 

method ensures that maintenance schedules are 
more dynamically aligned with actual 
operational risks, optimizing resource allocation 
and potentially reducing unnecessary 
maintenance actions. 

• Risk Management: By resetting the hazard rate at 
this critical point, you maintain control over the 
system’s reliability, preventing the hazard rate 
from escalating beyond the expected average 
without intervention. 

• Predictive Maintenance: This approach can be 
further enhanced by integrating real-time 
monitoring data to adjust \mu and consequently 
\eta, allowing for an adaptive maintenance 

Figure 5: Sawtooth Hazard Rate Model 
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schedule based on actual wear and 
environmental conditions. 

5) Conclusion 
The strategy to to set  smartly ties the Weibull 
distribution’s parameters to the fundamental characteristics 
of the NegExp distribution, optimizing maintenance 
intervals to a point where the failure risk begins to increase 
significantly. This method provides a solid statistical 
foundation for predictive and preventive maintenance 
programs, which can lead to improved reliability and 
operational efficiency.  

IV. SIMULATION MODELS 

A. Simulation Model Description 

This simulation model employs a systematic approach to 
evaluate the reliability and maintenance strategies of a 
manufacturing station within a single station setup. It is 
structured to analyze the influence of varying maintenance 
parameters under different statistical distributions for failure 
intervals. The core components of the model include: 

 
• Source: Initiates the process by continuously supplying 

parts without constraints, representing a steady input 
flow. 

• Processing Station: Central to the model, this station 
processes parts with a fixed duration of 10 seconds 
per part. The performance of this station is influenced 
by the predefined maintenance strategies and failure 
distributions. 

• Drain: Collects processed parts, symbolizing the end of 
the production cycle 

B. Experimental Design and Parameters 
The experiment consists of 20 distinct runs divided into 

two main categories, each designed to scrutinize different 
aspects of maintenance strategies: 

1. First 10 Experiments: Aimed at examining the 
station’s behavior under varied maintenance 
schedules while keeping the frequency of failures 
approximately constant. This set alternates 
between: 

• Odd-numbered experiments employing a 
Negative Exponential (NegExp) 
distribution, focusing on a memoryless 
failure model. 

• Even-numbered experiments using a 
Weibull distribution with tailored 
parameters to ensure optimal 
maintenance timing. 

The Mean Time To Repair (MTTR) is for both 
distributions adjusted across different availabilities and uses 
an Erlang distribution. 

2. Last 10 Experiments: These maintain a constant 
MTTR and vary only in terms of system 
availability, exploring the impact of operational 
uptime on performance.  

C. Results of Experiments with the negative exponential 
distributions 

 

 
 

Figure 6: Comprehensive Maintenance and Failure 
Analysis Setup in Plant Simulation 

Figure 7: Experimental Definitions and Parameters 
Overview 

Figure 8: Summary Table of Experiments with 
Negative Exponential Distribution 

Figure 9: Graphical Summary of Experimental 
Results with Negative Exponential Distribution 

Figure 11: Fitting Results of MTBF to Negative 
Exponential Distribution 

Figure 10: Descriptive Statistics of Experiments with Nega- 
tive Exponential Distribution 
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D. Results of Experiments with the Weibull distributions 

 

 

 
E. Statistical Analysis (Independent Samples t-test) 

The results of the t-tests for comparing the Negative 
Exponential (even-numbered experiments) and Weibull 
(odd-numbered experiments) distributions across the four 
metrics are as follows: 
 

1) Total Throughput and Throughput per Day 
• Null Hypothesis ( ): There is no significant 

difference in Total Throughput between the 
Negative Exponential and Weibull distributions. 

 
• Alternative Hypothesis ( ): There is a significant 

difference in Total Throughput between the 
Negative Exponential and Weibull distributions. 

 

a) Results: 

• t-statistic: -0.552 
• p-value: 0.587 

 
2) Number of Failures 

• Null Hypothesis ( ): There is no significant 
difference in the Number of Failures between the 
Negative Exponential and Weibull distributions. 

 
• Alternative Hypothesis ( ): There is a significant 

difference in the Number of Failures between the 
Negative Exponential and Weibull distributions. 

 

a) Results: 

• t-statistic: 0.838 
• p-value: 0.413 

 
3) Failure Rate 

• Null Hypothesis ( ): There is no significant 
difference in the Failure Rate between the 
Negative Exponential and Weibull distributions. 

 
• Alternative Hypothesis ( ): There is a significant 

difference in the Failure Rate between the 
Negative Exponential and Weibull distributions. 

 

a) Results: 

• t-statistic: 0.552 
• p-value: 0.588 

 
4) Summary 

In our analysis, we used the independent samples t-test to 
compare the performance metrics (Total Throughput, TpD, 
Number of Failures, and Failure Rate) between two groups: 
those using the Negative Exponential distribution and those 
using the Weibull distribution. We calculated the t-statistics 
and p-values for each metric. The p-values were all greater 
than 0.05, indicating that the differences in means between 
the two groups were not statistically significant. Thus, while 
the Weibull distribution appears to perform better in terms 
of raw metrics, the improvement is not statistically 
significant enough to definitively state that the Weibull 
yields different results. 

F. Maintenance Implementation 
The implementation of maintenance in the simulation 

model is managed using a Generator object. The Generator 
object controls the timing and duration of maintenance 
activities, ensuring they are accurately represented within 
the system’s operational timeline. 

 
1)  Interval and Duration: 

• Interval: This parameter defines the time between two 
activations of the Interval control, effectively setting 
the period from the end of one maintenance event to 
the start of the next maintenance event. 

Figure 12: Summary Table of Experiments with 
Weibull Dis- tribution 

Figure 13: Graphical Summary of Experimental 
Results with Weibull Distribution 

Figure 14: Descriptive Statistics of Experiments with 
Weibull Distribution 



 
Optimizing Maintenance Strategies through Simulation Modeling 

                                                                                              24                                                                       www.ijeas.org 

• Duration: This parameter defines the time span 
between the activation of the Interval control and the 
activation of the Duration control, which marks the 
end of the maintenance period. 
 

2)  Start of Maintenance: 
At the start of a maintenance event, the following actions 

are performed: 
• If a failure is active, it is deactivated, and the 

maintenance process is initiated. 
• The failure profile itself is also deactivated at the start 

of maintenance and reactivated at the end of the 
maintenance period. 
 

3)  End of Maintenance: 
At the end of a maintenance event, the following actions 

are performed: 
 
• The start time of the failure profile is set to the current 

time. 
• The stop time of the failure profile is set to the start of 

the next maintenance event, ensuring that no failures 
are initiated during the maintenance period. 

• The failure profile is reactivated. 
 

4)  Initialization: 
Both the failure profile and the Maintenance Generator are 
set up at the initiation of each simulation run. This setup 
ensures that the timing and effects of maintenance are 
consistently applied throughout the simulation, allowing for 
accurate modeling of the system’s reliability and 
maintenance dynamics. 

G. Experimental Design and Parameters 
The experiment consists of 20 distinct runs divided into 

two main categories, each designed to scrutinize different 
aspects of maintenance strategies: 

 
1) First 10 Experiments 

The first 10 experiments aim to examine the station’s 
behavior under varied maintenance schedules while keeping 
the frequency of failures approximately constant, as defined 
by the Negative Exponential (NegExp) distributions. This 
set alternates between two types of experiments: 

 
• Odd-numbered experiments: These employ a 

Negative Exponential (NegExp) distribution, 
focusing on a memoryless failure model without 
any maintenance. 

• Even-numbered experiments: These use a Weibull 
distribution with tailored parameters to ensure 
optimal maintenance timing, including the 
implementation of a maintenance generator. 
 

For both distributions, the Mean Time To Repair (MTTR) 
is adjusted across different availabilities and further uses the 
Erlang distribution. The key parameters for these 
experiments are: 

 
• Maintenance Duration: Set to 0.5 of the mean (\mu) 

of the Erlang distribution and is kept constant. 

• Maintenance Interval: Set to 0.5 of the mean (\mu) 
of the NegExp distribution. 
 

2) Last 10 Experiments: 
The last 10 experiments maintain a constant MTTR and 

vary only in terms of system availability, exploring the 
impact of operational uptime on performance. In these 
experiments, the maintenance interval is adjusted to 0.3 of 
the mean (\mu) of the NegExp distribution, rather than 0.5. 
This allows for a detailed examination of how different 
maintenance intervals affect system performance and 
reliability. 

 
• MTTR: Constant across all experiments. 
• System Availability: Varied to explore its impact on 

performance. 
• Maintenance Interval and Duration: Set to 0.3 of the 

mean (\mu) of the NegExp distribution and the 
Erlang distribution accordingly. 
 

3) Results after activating Maintenance Jobs 
 
 
 

Figure 17: Summary of the additional Experimental 
Maintenance Definitions on the Weibull 
Distributions 

Figure 18: Summary Table of Experiments with 
Weibull Distribution extended with Maintenance 
Interval and Duration 
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V. DISCUSSION OF RESULTS 

 

A. Without Maintenance (Left Side) 
1) Overview 

The histograms show the distribution of the time between 
failures and the time to repair. Generally, the distributions 
appear skewed, with a higher frequency of shorter intervals 
and repairs. 

2) Failure Frequency 
This suggests that failures occur relatively frequently, and 

repairs are often completed in shorter durations. 

Figure 19: Graphical Summary of Experimental 
Results with Weibull Distribution and Maintenance 
active 

Figure 20: Descriptive Statistics of Experiments with 
Weibull Intervals and Maintenance active 

Figure 21: Fitting Results of MTBF to Negative Exponential 
Distribution (Maintenance active) 

Figure 22: Fitting Results of MTBF to Weibull Distribution 
(Maintenance active 

Figure 23: Experiments with Constant frequency of 
failures and changing Availability 

Figure 24: Experiments with Constant MTTR for failures 
and changing Availability 
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3) Variation in Time Between Failures 
There is also a noticeable variation in the time between 

failures, indicating that the system’s reliability is 
inconsistent over time. 

B. With Maintenance (Right Side) 
1) Impact of Maintenance Checks 

The introduction of maintenance checks changes the 
distribution of time between failures. The histograms 
indicate that maintenance checks at fixed intervals tend to 
increase the time between failures, as preventive 
maintenance helps to mitigate unexpected failures. 

2) Duration of Maintenance Checks 
The fixed duration for maintenance checks is typically 

shorter than the repair times, as shown in the histograms. 
This is logical, as preventive maintenance is usually less 
time-consuming than corrective maintenance. 

3) Decrease in Short Repair Times 
The frequency of short repair times decreases, suggesting 

that regular maintenance helps to avoid certain types of 
failures that would otherwise require immediate repair. 

C. Comparison Between Experiments 
1) Experiment 1 (80% Availability, MTTR Without 
Maintenance) 

The system has frequent failures with shorter repair times. 
The introduction of maintenance checks increases the time 
between failures and stabilizes the system’s reliability. 

2) Experiment 2 (85% Availability, MTTR Without 
Maintenance) 

Similar trends as Experiment 1, but with slightly less 
frequent failures. Maintenance checks continue to improve 
the time between failures. 

3) Higher Availability Experiments (90%, 95%, 98%) 
With increasing availability, the time between failures 

without maintenance increases. Maintenance checks further 
extend the time between failures, demonstrating their 
effectiveness. The higher the availability, the more 
significant the impact of maintenance checks on improving 
system reliability. 

D. Insights 
1) Preventive Maintenance 

Regular maintenance checks are crucial for improving the 
system’s reliability and reducing the frequency of failures. 

2) System Availability 
Higher availability systems benefit more from 

maintenance checks as they already have a lower frequency 
of failures. 

3) Consistency 
Maintenance checks help in making the time between 

failures more consistent, reducing the unpredictability of 
system downtimes. 

E. Summary 
In summary, the data and histograms collectively 

highlight the importance of maintenance checks in 
enhancing system performance and reliability. The 
experiments demonstrate that while systems with higher 
inherent availability perform better, preventive maintenance 
universally contributes to extending the operational periods 
between failures and reducing downtime. Furthermore, 
regular maintenance checks are crucial in enhancing the 

consistency and predictability of system downtimes. They 
reduce the variability in the time between failures, making it 
easier to manage and predict system performance. This 
predictability not only improves the overall reliability of the 
system but also ensures that inter-operation buffers are used 
effectively, minimizing disruptions and maintaining a 
smooth operational flow. 

VI. CONCLUSION 
The research presented demonstrates the critical role of 
dynamic maintenance strategies in enhancing the reliability 
and efficiency of operational systems. By integrating more 
realistic failure dynamics through the sawtooth hazard rate 
model and leveraging the flexibility of the Weibull 
distribution, the study successfully addresses the limitations 
of the traditional Negative Exponential distribution. The 
simulation experiments validate that regular maintenance 
checks significantly extend the time between failures, 
reduce downtime, and stabilize system performance. 
Statistical analyses confirm that while higher availability 
systems inherently perform better, preventive maintenance 
universally enhances system reliability. This research 
underscores the importance of adaptive maintenance 
schedules based on real-time monitoring and operational 
conditions, offering a robust framework for predictive and 
preventive maintenance programs. The findings provide 
valuable insights for optimizing maintenance strategies, 
thereby contributing to more efficient and reliable industrial 
operations. 
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