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Abstract— As a quantum analogue of classical Markov 

chains, open quantum walks are widely used in many research 
fields such as quantum computing and quantum simulation. In 
this paper, we extend the intrinsic open quantum walk model 
defined on one-dimensional integer lattice to 
higher-dimensional integer lattices and study its structural 
properties. 
 

Index Terms—Open Quantum walk, Quantum channel, 
Probability distribution, Integer lattices.  

I. INTRODUCTION 
As a quantum analogue of classical random walks, 

quantum walks[1] have a wide range of applications in 
fields such as quantum information[2], quantum 
computing[3] and biology[4]. Quantum walks are mainly 
divided into discrete-time quantum walks and 
continuous-time quantum walks. According to whether they 
interact with the environment or not, quantum walks can be 
divided into two categories: unitary quantum walks and 
open quantum walks[5]. In fact, every quantum system is 
actually open. However, closed quantum system is only a 
theoretical desirable model. An open quantum walk is only a 
kind of non-unitary dynamical model describing open 
quantum system, which was first introduced by Attal[6] et 
al. in 2012. The central limit theorem for the open quantum 
walks on -dimensional integer lattice  was proved in [7].  In 
this paper, we will focus on open quantum walks on the 
-dimensional integer lattice . 

With the in-depth study of quantum walks, we gradually 
realize that the extension of quantum walks to higher 
dimensions (i.e., high-dimensional quantum walks) can 
reveal more complicated quantum phenomena and have 
great impact on quantum computation and quantum 
information processing. In 2002, Mackay and Bartlett et 
al.[8] extended Hadamard walk to the high-dimensional case 
and examined the time dependence of standard deviation, 
which revealed a general characterization of the secondary 
gain of the classical random walks. Szegedy[9] introduced a 
general method for quantizing classical algorithms based on 
random walks and generalized the celebrated result of 
Ambainiset. that computes properties of quantum walks on 
the -dimensional torus. In 2017,Komatsu and Konno[10] 
studied the steady-state amplitude of quantum walks on 
high-dimensional integer lattice, obtaining a smooth 
measure for Grover's walks. 
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In recent years, open quantum walks on high-dimensional 
integer lattices have attracted increasing attention from 
experts and have made remarkable progress, including the 
establishment of theoretical models and breakthroughs in 
experimental verification, which lays groundwork for the 
application prospect of high-dimensional quantum walks. In 
2020, Wang [11] et al. proposed a discrete-time quantum 
walk model on a -dimensional integer lattice using quantum 
Bernoulli noises. In 2023, Esposito[12] et al. used 
two-dimensional quantum oscillatory evolution as a tool for 
generating high-dimensional quantum states. And they 
succeeded in generating high-dimensional quantum states 
using two-dimensional quantum walks on an experimental 
photonics platform. In the same year, Wang and Zhan et al. 
[13] realized a general positive-operator valued 
measurement on a high-dimensional quantum system, and 
using single photon and linear optics, a general 
positive-operator valued measurement was experimentally 
achieved on a three-dimensional system with high fidelity. 

In this paper, we extend the intrinsic open quantum walks 
on the integer lattice to a higher dimensional case. More 
precisely, for a general positive integer , we will introduce a 
high-dimensional model of intrinsic open quantum walk on 
a -dimensional integer lattice  and study its constructive 
properties. 

II. PRELIMINARIES 
In this section, we recall some necessary notions and facts 

about Hilbert. 

Assume 2d ≥  is a given positive integer. We denote by 
d¢  the set of d -weighted Cartesian products of the set of 

integers ¢ , namely 

1 2 1 2{ ( , , , ) | , , , }d
d dx x x x x x x= = ⋅⋅⋅ ⋅⋅⋅ ∈¢ ¢ .  (1) 

In the literature, 
d¢  is often referred to as the 

d -dimensional integer lattice. 

The model of open quantum walks on a d -dimensional 

integer lattice 
d¢  are aimed at describing the walking 

behavior of a quantum particle with 2d  degrees of freedom 

on 
d¢ . To describe this process, it involves two spaces: 

one is called the position space, which describes the 
positional state of the quantum particle, the other is called 
the coin space, which describes the internal degrees of 
freedom of the quantum particle. Their tensor product space 
is used to describe the state of the quantum particle. This is 

called the state space. Let 
d£  be coin space, this section 

briefly introduces some concepts, notations, and facts about 

the position space and its tensor product space with
d£ . 

Let 
2 ( )dl ¢  be the space of square summable functions 
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on the d -dimensional lattice 
d¢ , namely 

2 2( ) : | | ( ) | ,{ }
d

d d

x

xξ ξ
∈

= → <∞∑
¢

l ¢ ¢ £
 (2) 

with the natural linear operations and the inner product 
,〈⋅ ⋅〉   given by 

2, ( ) ( ),   , ( ),
d

d

x

x xξ η ξ η ξ η
∈

〈 〉 = ∈∑
¢

l ¢
 

where ( )xξ  denotes complex conjugate. As a separable 

complex Hilbert space, 
2 ( )dl ¢  has an orthonormal basis 

(ONB) of the form { | }dz zδ ∈¢ , where zδ  is the Dirac 

delta function on 
d¢  defined by 

1, ;  ;
( )

0, ;  .

d

z d

x z x
x

x z x
δ

⎧ = ∈
= ⎨

≠ ∈⎩

¢
¢  

We call { | }dz zδ ∈¢  the canonical ONB for 
2 ( )dl ¢ . 

For 
2 ( ),dξ ∈ l ¢  it is easy to see that 

2 ( )
, ( )dz zδ ξ ξ〈 〉 =

l ¢ ,
dz∈¢ , thus, each 

2 ( )dξ ∈ l ¢  
has a Fourier expansion of the form 

2 ( )
, ( )d

d d
z z z

z z

zξ δ ξ δ ξ δ
∈ ∈

= 〈 〉 =∑ ∑l ¢
¢ ¢

, 

where the series on righthand side converges in norm 

2 2( ) ( )
  ,d d⋅ = 〈⋅ ⋅〉

l ¢ l ¢
‖ ‖

. 

We introduce the notation { 1, 1}Λ = − + , and denote by 
dΛ  the set of d -weighted Cartesian product of Λ , namely 

1 2{ ( , , , ) | ,1 }.d
d j j dε ε ε ε εΛ = = ⋅⋅⋅ ∈Λ ≤ ≤  

It is easy to see that 
d dΛ ⊆ ¢ , and # 2d dΛ = ,  where 

# dΛ  means the cardinality of 
dΛ , namely 

dΛ  is a 
2d -element subset of the d -dimensional integer lattice 

.d¢  Furthermore, it can be shown that if 

1 2( , , , )dε ε ε ε− = − − ⋅⋅⋅ − , then 
dε− ∈Λ . 

Given 
dε ∈Λ  and the function : df →¢ £ , we denote 

by fε  
( ) ( ),   .df x f x xε ε= + ∈¢   (3) 

It is easy to see that if 
2 ( )df ∈ l ¢ , 

2 ( )dfε ∈ l ¢ , 

moreover 
2 2( ) ( )

||d df fε=
l ¢ l ¢

‖‖ ‖
. 

Definition 2.1. Let 
dε ∈Λ  be gived, there exist the 

ε -shift operators Sε  on 
2 ( )dl ¢  such that 

2, ( )dS f f fε ε= ∈ l ¢ . 

Lemma 2.1. Let 
dε ∈Λ  be give, then the ε -shift operator 

Sε  is a unitary operator on 
2 ( )dl ¢ , whose adjoint 

operator is ε− -shift operator S ε− , such that .S Sε ε
∗

−=  

Let 
2, ( )df g∈ l ¢  be gived, the Dirac operator denote by 

| |f g〉〈 , namely | |f g〉〈  is defined by the following 

 
2

2
( )

| | , ,   ( ).d
df g u g u f u〉〈 = 〈 〉 ∈

l ¢
l ¢

  (4) 

It is easy to see that | |f g〉〈  is a bounded operator on 
2 ( )dl ¢ , In particular, if 

2 ( )
1df =

l
‖‖

Z , then | |f g〉〈  is a 

one-dimensional projection operator on 
2 ( )dl ¢ .  

According to the general theory of functional analysis, the 

projection operator system }|{  | |    d
x x xδ δ〉〈 ∈¢  

constructed by the canonical ONB { | }dx xδ ∈¢  for 
2 ( )dl ¢  has partition of identity. Namely, for 

1 2,
dz z ∈¢  with 1 2 ,z z≠  we have 

1 1 2 2
| || | 0z z z zδ δ δ δ〉〈 〉〈 =

 and 

2 ( )
| |d

d
z z

z

I δ δ
∈

= 〉〈∑l ¢
¢

.  (5) 

Here 
2 ( )d
I
l ¢  is the identity operator on 

2 ( )dl ¢ , where the 
operator series converge strongly. 

Definition 2.2. Let }|{ dAε ε= ∈ΛU  be a set of 

bounded operators on the space 
d£  with index set 

dΛ , and 

satisfies the following conditions, d

Aε
ε∈Λ
∑

 is unitary 

operator on 
d£ ;  

For 
', dε ε ∈Λ  with 

'ε ε= , we have 
* 0.A A A A

εε ε ε ʹ

∗
ʹ = =   

We call | }{ dAε ε= ∈ΛU  the 
dΛ -coin operator 

system on 
d£ . 

It is easy to see that the notion of 
dΛ -coin operator 

system is a natural generalization of the notion of coin 

operator pair in the open quantum walk on 
d¢ . The 

following proposition describes the operation property of the 
dΛ -coin operator system. 

Proposition 2.1. Let { | }dAε ε= ∈ΛU  be a 
dΛ -coin 

operator system on 
d£  and dI£  is a family identity 

operators on 
d£ . Then we have 

* * .
d d

dA A A A Iε ε ε ε
ε ε∈Λ ∈Λ

= =∑ ∑
  (6) 

Where dI  is the identity operator on 
d£ . 

Moerover, for each 
dε ∈Λ , the product 

*A Aε ε  and
*A Aε ε  

are projection operators on 
d£ . 



                                                                                
International Journal of Engineering and Applied Sciences (IJEAS) 

 ISSN: 2394-3661, Volume-11, Issue-12, December 2024  
 

                                                                                                  17                                                                       www.ijeas.org 

 

Proof. Let  d

U Aε
ε∈Λ

= ∑
, then 

* *

d

U Aε
ε∈Λ

= ∑
. Thus,  

* * *( )( ) .
d d d d

dI U U A A A Aε ε ε
ε ε ε

ε
ε∈Λ ∈Λ ∈ ʹΛ ∈Λ

ʹ= = =∑ ∑ ∑ ∑
 

On the other hand, when ,
dε ε ʹ∈Λ  and ε ε ʹ≠ , we have 

* 0A Aε ε ʹ = . Applying this property to the above summation 
yields 

* .
d

A A Iε ε
ε∈Λ

=∑
 

Similarly, we can verify the equation 

*

d

A A Iε ε
ε∈Λ

=∑
. 

In the following, we prove the remaining conclusions. 

Setting 
dε ∈Λ . Clearly 

*A Aε ε  and 
*A Aε ε  are self-adjoint 

operators. Using the equation 

*

d

A A Iε ε
ε∈Λ

=∑
, we have 

* 2 * *

* * * *

,

,

(

.

) ( )
d

d

A A A A I A A

A A A A A A A A

ε ε
ε

ε ε
ε

ε
ε

ε ε ε ε
ε ε

ε ε ε ε ε
ε

ʹ∈Λ

≠

ʹ ʹ

ʹ

ʹ ʹ
ʹ ʹ

≠

∈Λ

= − =

− =

∑

∑
 

So 
*A Aε ε  is a projection operator. Similarly, 

*A Aε ε  is also 
a projection operator. 

The natural choice of state space is the tensor space 
2 ( )d d⊗l ¢ £ . The following are some facts about 
2 ( )d d⊗l ¢ £ . We respectively use ,〈⋅ ⋅〉  and   ⋅‖ ‖ to 

represent the inner product and norm in 
2 ( )d d⊗l ¢ £ . 

Lemma 2.2. Let 
2 ( )d d⊗l ¢ £  be the tensor product 

space, it admits the following features: 

For 
2

1 2 1 2, ( ),  ,d du uξ ξ ∈ ∈l ¢ £ , we get  

21 1 2 2 1 2 1 2( )
, , ,d du u u uξ ξ ξ ξ〈 ⊗ ⊗ 〉 = 〈 〉 〈 〉

l ¢ £
,  (7) 

where 
, d〈⋅ ⋅〉

£  is the inner product on 
d£ ; 

span  
2| ( ),{ }d du uξ ξ⊗ ∈ ∈l ¢ £  is a complete 

subset of 
2 ( )d d⊗l ¢ £ ;  

Let A and B be bounded operators on 
2 ( )dl ¢  and 

d£ , 

respectively. Then A B⊗  is bounded operator on 
2 ( )d d⊗l ¢ £  and satisfies 

2( ) ( ) ( .), ( ),d dA B u A Bu uξ ξ ξ⊗ ⊗ = ⊗ ∈ ∈l ¢ £ (8) 

moreover, A B A B⊗ =‖ ‖‖‖‖‖. 
The Banach space consisting of all trace class operators 

on the tensor product space 
2 ( )d d⊗l ¢ £  is denoted by 

2 ( )( )d d⊗l ¢ £S  with norm 1  ⋅‖ ‖ . In addition, let 
2( ( ) )d d

+ ⊗l ¢ £S  be positive elements on 

2( )( )d d⊗l ¢ £S . That is 
2

2

( )

( ) 0

( )
{ ( ) }.

d d

d dρ ρ

+ ⊗

= ∈ ⊗ ≥

l ¢ £

% %l ¢ £ ∣

S

S   (9) 

If 
2( ( ) )d dρ +∈ ⊗% l ¢ £S  and Tr =1ρ% , then ρ% is a 

density operator on 
2 ( )d d⊗l ¢ £ . The set of all density 

operators on space 
2 ( )d d⊗l ¢ £  is denoted by 

2( ( ) )d d⊗l ¢ £D . 
Similar to the tensor product space, we denote by 
( )d+ £S  the set of all positive trace class operators on 

d£ . 

In fact, ( )d+ £S  is the set of all positive operators on 
d£ . 

In the following, we denote byTrA  the trace of operator A. 

Definition 2.3. There is a map : ( )d dρ +→¢ £S , 

it satisfies 
Tr[ ( )] 1

dx

xρ
∈

=∑
¢ . We refer to ρ  as  

d -dimension nucleus from 
d¢  to 

d£ . The set of all 

d -dimension nucleus from 
d¢  to )( dS+ £  is denoted by 

,( )d d¢ £Nuc . 
The following lemma shows that density operators on the 

tensor product space 
2 ( )d d⊗l ¢ £  can be constructed by 

nucleus from 
d¢  to )( dS+ £ . 

Lemma 2.3. Let ,( )d dρ ∈ ¢ £Nuc  be given. Then for 

each 
dx∈¢ , the corresponding tensor product operator 

| | ( )x x xδ δ ρ〉〈 ⊗  is a positive trace class operator on 
2 ( )d d⊗l ¢ £ . Moreover, the operator series 

| | ( )
d

x x
x

xδ δ ρ
∈

〉〈 ⊗∑
¢   (10) 

converge in norm of trace operator space   
2( )( )d d⊗l ¢ £S , and its sum operator is the density 

operator on the space 
2 ( )d d⊗l ¢ £ . 

Thus, the sum of  operator series (10) belongs to 
2( ( ) )d d⊗l ¢ £D . In the following, we use 

2( ( ) ))d d⊗l ¢ £D Nuc  to denote the set of operator series, 
namly 

2 ˆ ˆ( ( ) ) | | | ( ),

, .

{

( )}
d

d d
x x

x

d d

xρ ρ δ δ ρ

ρ

∈

⊗ = = 〉〈 ⊗

∈

∑
¢

l ¢ £

¢ £

D Nuc

Nuc  
 (11) 

The element in 
2( ( ) )d d⊗l ¢ £D Nuc  is a density operator 
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with a Nucleus on 
2 ( )d d⊗l ¢ £ . 

The intrinsic open quantum walk model that we introduce 
on the one-dimensional integer lattice is given below. 

Lemma 2.4. Let { },C D  be the coin operator pair of 
2£ . 

Then the one-dimensional integer lattice Z   generated by 
{ },C D  generated by intrinsic open quantum walk is a 
quantum dynamical model with  the following features: 

The walk takes 
2 2( )⊗l ¢ £  as its state space and its states 

are represented by unit vectors in 
2 2( )⊗l ¢ £ ; 

The evolution of its state is governed by equation 
( ) (0) ( ) (0), 0, , 0,( ) ( )n n n nn nω ω ω ω= ≥ = ≥L L  

 (12) 

where L  is the intrinsic quantum channel generated by 

{ },C D , 
nL  denotes its n-th composition. (

0L  is defined 

as the corresponding identity mapping ), and 
( )nω  is the 

state of the walk at time n , in particular 
(0)ω  is the initial 

state. 
 

III. MAIN RESULTS 
In this section, we state and prove our main results. 
As mentioned above, in open quantum walk model on the 

d -dimensional integer lattice 
d¢ , we use 

2 ( )dl ¢  and 
d£  to represent the position space and coin space, 

respectively. 

In the following, 
2 ( )

,  d dI I
£ l ¢  and I  denote dentity 

operator on 
d£ , 

2 ( )dl ¢  and 
2 ( )d d⊗l ¢ £  respectiveiy.  

Definition 3.1. Let { | }dAε ε= ∈ΛU  be a system of 

bounded operators on 
d£  with index set 

dΛ . If 
* .d

d

A A Iε ε
ε∈Λ

=∑ £
  (13) 

then { | }dAε ε= ∈ΛU  is said to be a 
dΛ -generalized  

operator system on 
d£ .  

It is easy to see that the 
dΛ -coin operator system on 

d£  

must be a 
dΛ -generalized coin operator system, but the 

converse does not necessarily hold. In the literature, 
generalized coin operator system are also known as Kraus 
operator system. The following proposition shows a specific 
application of generalized coin operator system. 

Proposition 3.1. Let { | }dAε ε= ∈ΛU  be a 
dΛ  

-generalized coin operator system on 
d£ . If ( )dρ +∈ £S , 

then * ( )
d

dA Aε ε
ε

ρ +
∈Λ

∈∑ £S , and 

*Tr[ ] Tr
d

A Aε ε
ε

ρ ρ
∈Λ

=∑
. 

Proof. For each indicator 
dε ∈Λ , it is easy to see 

*A Aε ερ  
is a positive operator, according to the properties of the trace 

class operator, 
*A Aε ερ  is still a trace class operator. Thus 

* ( )dA Aε ερ +∈ £S , this mean   

* ( ).
d

dA Aε ε
ε

ρ +
∈Λ

∈∑ £S
 

Applying the properties of the trace class operator and 
*

d
d

A A Iε ε
ε∈Λ

=∑ £
 , we get 

d d d

d

* * *

*

Tr[ A A ]= Tr[A A ]= Tr[ A A ]

=Tr[ A A ]=Tr .

ε ε ε ε ε ε
ε ε ε

ε ε
ε

ρ ρ ρ

ρ ρ
∈Λ ∈Λ ∈Λ

∈Λ

∑ ∑ ∑

∑

Lemma 3.1. Let ,  { | }d d
z zε δ∈Λ ∈¢  be the ONB on 

2 ( )dl Z . Then, the ε -drift operator Sε  has an operator 
series representation of the following form 

| |,
d

z z
z

Sε εδ δ +
∈

= 〉〈∑
¢   (14) 

where the operator series  on righthand side converges 

strongly. In particular, Sε  satisfies  
, d

z zS zε εδ δ −= ∀ ∈¢ . 
According to Lemma 2.1., it can be inferred that 
*S Sε ε−= ,  namely , d

z zS zε εδ δ− += ∀ ∈¢ . 

Let }|{ dAε ε= ∈ΛU  be a 
dΛ -generalized coin operator 

system on 
d£ . A bounded operator 

UL  on 
2 ( )d d⊗l ¢ £  

can be defined as follows  
( ) S Aε ε= ⊗AL ,  (15) 

where 
dε ∈Λ . Then the system of operators { }UL  is said 

to be Kraus operators system generated by U  in the 

Unitstensor product space 
2 ( )d d⊗l ¢ £ , and the elements 

of this system are called the Kraus operators generated by 
U . 

Theorem 3.1. Let }|{ dAε ε= ∈ΛU  be a 
dΛ -generalized 

coin operator system on 
d£ . Then the Kraus operator 

system { }UL  has the following properties 
*( ) ( ) .I=U UL L   (16) 

Proof. Using the properties of the tensor product operator, 
we obtain 

*

2

( ) ( ) *

*

*

( )

( ) ( )

( )( )

( ) ( )

d d

S A S A
S A S A
S S A A
I I

I

ε ε ε ε

ε ε ε ε

ε ε ε ε

−

−

= ⊗ ⊗

= ⊗ ⊗

= ⊗

= ⊗

=
l ¢ £

U UL L

. 
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where 
2 ( )d
I
l ¢  and dI£  denote the identity operator on 

2 ( )dl ¢  and 
d£  respectively. The proposition is proved. 

Let }|{ dAε ε= ∈ΛU  be a 
dΛ -generalized coin 

operator system on 
d£ . The mapping ( )UL  on 

2( ( ) )d d⊗l ¢ £S  be defined as follows 
*( ) ( ) 2

( ) ( ) , ( .( ) )d dω ω ω= ∈ ⊗l £ZU U
U SL L L  

 (17) 
By Theorem 3.1, we can see that it satisfies 

( )Tr[ ( )] Trω ω=UL ,
2( ( ) )d dω∀ ∈ ⊗l ¢ £S , and 

2( ( ) )d d
+ ⊗l ¢ £S  is invariant under the action of ( )UL . 

Thus   
2 2

( ) ( ) ( ( ) ), ( ( ) ).d dω ω∈ ⊗ ∀ ∈ ⊗l ¢ £ l ¢ £U S SL
  (18) 

The map ( )UL is a d -dimensional quantum channel on 
2 ( )d d⊗l ¢ £ . 

Let }|{ dAε ε= ∈ΛU  be a 
dΛ -generalized coin 

operators system on 
d£ . Then the quantum channel ( )UL  

defined by (17) is called the d -dimensional intrinsic 

quantum channel generated by 
dΛ -generalized coin 

operator system U  on 
2 ( )d d⊗l ¢ £ . The d -dimensional 

intrinsic quantum channel generated by U , abbreviated as 
U -generated d -dimensional intrinsic quantum channel. 

It is easy to see that the d -dimensional intrinsic quantum 

channel ( )UL  generated by U  is independent of the ONB 

in 
2 ( )dl ¢ , and it is an extension of the intrinsic quantum 

channel on the integer lattice ¢ .The next theorem further 
gives analytic and algebraic properties of the 

d -dimensional intrinsic quantum channel ( )UL . 

Theorem 3.2. Let }|{ dAε ε= ∈ΛU  be a 
dΛ -generalized coin operators system on the space 

d£ , 

( )UL  is the intrinsic quantum channel generated by U . 

Then ( )UL  is a continuous linear mapping in the Banach 

space 
2( ( ) ),d d⊗l ¢ £S  and 

2( ( ) )d d⊗l ¢ £D Nuc  is 

invariant under the action of ( )UL , namely one has 
2 2

( ) ( ) ( ) , ( ) .( ) ( )d d d dω ω∈ ⊗ ∀ ∈ ⊗l ¢ £ l ¢ £U D DL Nuc Nuc

  (19) 

Proof. Clearly ( )UL  is a linear mapping on the Banach 

space 
2( ( ) )d d⊗l ¢ £S . Let 

2( ( ) )d dω∈ ⊗l ¢ £S . 

From the relation between the operator norm and trace norm 
of the operator it follows that 

*
( ) 1 1

*
1

2 

         

.

( ) ( )

 

 

 

 

 

 

 

  

( )

( )

   

   

        

S A S A

S A S A

S A

ε ε ε ε

ε ε ε ε

ε ε

ω ω

ω

= ⊗ ⊗

≤ ⊗ ⊗

= ⊗

‖ ‖ ‖ ‖

‖ ‖‖ ‖‖ ‖

‖ ‖

UL

 

This shows that ( )UL  is also bounded on the Banach space 
2( ( ) )d⊗l ¢ £S . Thus ( )UL  is a continuous linear 

mapping on the Banach space 
2( ( ) )d⊗l ¢ £S . For 

2 ( )( )dω∈ ⊗l ¢ £DNuc , we have 

| | ( ), ,( )
d

d d
x x

x

xω δ δ ρ ρ
∈

= 〉〈 ⊗ ∈∑
¢

¢ £Nuc
. 

We define 
*( ) ( )x A x Aε ερ ρ=% , it has that 

,( )d dρ ∈% ¢ £Nuc . For each x∈¢ , using the 
properties of the shift operator, we get 
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Further, using continuity of ( )AL , we get 
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It is clearly that ( )
2( ) ( ( ) )dω ∈ ⊗l ¢ £U DL Nuc . 

Difinition 3.2. Let }|{ dAε ε= ∈ΛU  be a 
dΛ -generalized coin operators system on the space 

d£ . 

Then d -dimensional intrinsic quantum walk generated by 
U  is a quantum dynamics model with the following 
features  

We takes 
2 ( ) d⊗l ¢ £  as state space of the walk and its 

states are represented by density operator in 
2 ( ) d⊗l ¢ £ ; 

The evolution of walk is governed by equation 
( ) (0)

( ) , 0,( )n n nω ω= ≥UL   (20) 

where ( )UL  is the d -dimensional intrinsic quantum 
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channel generated by U , ( )
n
UL  denotes its n -th 

composition (
0
( )UL  is defined as the corresponding identity 

mapping ), and 
( )nω  is the state of the walk at time n  , in 

particular 
(0)ω  is the initial state. 

In this case, for each 0n ≥ , the function 
( )Tr[ ( )]nx xωa  on 

d¢  is referred to as the probability 
distribution of the walk at time n . In addition, the spaces 
2 ( )dl ¢  and 

d£  are respectively called the position space 
and the coin space of the intrinsic quantum walk. 
It is easy to see that the intrinsic open quantum walk as 
defined above is fully determined by the quantum channel 

( )UL , whereby we call ( )UL  as  intrinsic quantum channel. 

As seen before, the definition of ( )UL  does not depend on 

any ONB in the position space 
2 ( )dl ¢ , thus the intrinsic 

open quantum walk driven by ( )UL (i.e., the open quantum 
walk defined by the definition 3.2) does not depend on any 
ONB of state space, which fully demonstrates its intrinsic 
properties in high-dimensional space.  

IV. CONCLUSION 
As seen, in this paper, we extend an open quantum walk 

model on the one-dimensional integer lattice ¢  to the 
d -dimensional integer lattice 

d¢ . We introduce an 
intrinsic open quantum walk model on the d -dimensional 

integer lattice 
d¢ , which we call the high-dimensional 

intrinsic open quantum walk model. 
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